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1 Thread Scattering Model

1.1 Fiber scattering model

Fiber scatteringmodels represent individual fibers as cylinders and use the Bidirectional Curve ScatteringDistri-

bution Function (BCSDF) to characterize their scattering properties. Similar to the BSDF, the BCSDF describes

outgoing radiance Lr as an integral of incident radiance Li multiplied by the BCSDF S:

Lr (ωr) =

∫
Li (ωi)S (ωi, ωr) cos θidωi. (1)
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Figure 1: An illustration of the commonly adopted longitudinal-azimuthal parameterization for fiber scattering

models. Each of the directions ωi and ωr in 3D is parameterized using the polar angle θ, defined as the angle
between ω and the plane perpendicular to the cylinder axis, and the azimuthal angle φ, defined in that plane.

We express the BCSDF in spherical coordinates as S(θi, θr, φi, φr), using the angles illustrated in Figure

1. Most existing models represent the BCSDF as a sum of reflective and transmissive modes Sp, where each
mode Sp is factored into a longitudinal functionMp, an azimuthal function Np, and an attenuation Ap:

S (θi, θr, φi, φr) =
∞∑
p=0

Mp(θi, θr)Np(θi, φi, φr)Ap(θi, φi). (2)

p = 0 is the first reflection mode (R), p = 1 is the two transmission mode (TT), and p = 2 corresponds to

the transmission, reflection, and transmission mode (TRT). Our model is based on [1], where the longitudinal

function is from [2]

Mp (θi, θr) =
1

2v sinh(1/v)
e−

sin θi sin θr
v I0

(
cos θi cos θr

v

)
, (3)

with transformed longitudinal roughness v. The azimuthal functionNp(θi, φi, φr) evaluates a trimmed logistic
function around the perfect reflection or transmission direction. The attenuation term Ap(θi) computes the
Fresnel reflection and transmission contribution. The model relies on the Monte Carlo integration inherent in

path tracing to integrate across the fiber width.
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1.2 Multiple fiber scattering

We assume that azimuthal and longitudinal scattering are separable. To study azimuthal scattering behavior,

we simulate ray interactions with a single circle and with multiple circles in the cross-sectional plane.

Single circle. We shoot one million rays from the left, uniformly distributed across the diameter and inter-

secting the circle. At each interaction, we compute the Fresnel factor and use a random number to determine

whether reflection or refraction occurs. As the ray travels through the circle, we compute absorption accord-

ing to Beer’s law. Once the ray exits, we record its outgoing angle. Finally, we accumulate the energy of the

outgoing rays into angular bins to obtain the azimuthal scattering distribution of a single fiber. The simulation

naturally integrates over the width (i.e., diameter), as it does not account for the exact point of impact on the

circle.

(a) R (b) TT (c) TRT

Figure 2: Illustrations of rays interacting with a circle

(a) Total (b) R (c) TT (d) TRT

Figure 3: The angular distribution of single-circle scattering and its individual components

Multiple circles. To simulate light interacting with multiple fibers, we create small circles that represent cross

sections of fibers randomly inside a circular boundary that represents the thread. We assign the radius (R) of
the thread, the radius (r) of the fibers, the minimum gap (d) between the fibers and the maximum number of

attempts (M ) as parameters for the simulation. In each attempt, we try adding a new circle within the boundary,

which will be successful if it is at least d distance away from all existing ones. This continues until all M
attempts are exhausted.

For each cross-sectional configuration, we generate one million parallel rays pointing toward the thread,

uniformly distributed across its diameter, to simulate specular reflection, transmission, and absorption. To

account for the randomness inherent in any specific configuration, we generate 500 random circle arrangements

per simulation and average the resulting angular distributions. This can be seen as approximating the average

scattering behavior across different thread instances in real fabric.
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Figure 4: The left figure is an illustration of a multiple-circle configuration. compare the azimuthal scattering

functions of single fiber scattering and multiple fiber scattering with different small fiber radii, averaged over

random configurations.

Comparison. In Figure 5, we compare the scattering distributions of single-circle and multiple-circle cases

across six different absorption levels, as shown in the subsequent plots. In each plot, the multiple-circle scatter-

ing is shown for small circle radii ranging from 0.5 to 4.0, while the large circle (thread) radius is fixed at 10.0.

We observe that multiple-circle scattering exhibits stronger backscattering (corresponding to the R and TRT re-

gions in the single-circle case) and weaker forward scattering (the TT region). As the radius of the small circles

increases, the multiple-circle scattering distribution increasingly resembles that of the single-circle case. This

is expected—at the limit, the configuration becomes a single circle, which corresponds exactly to the single-

circle scattering case. Although the multiple-circle distribution differs from the single-circle one, it retains

similar characteristics, as seen in the R, TT, and TRT lobes. Each lobe appears to be independently squashed,

stretched, or scaled, and together they combine to form the overall multiple-circle scattering distribution.

Figure 5: Azimuthal scattering function comparison

1.3 Thread BCSDF

Based on the simulation results, we propose a newmodel St for threads composed of multiple fibers, comprising
three lobes: a low-order backward scattering mode adapted from the Rmode in single-fiber scattering, a forward
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scattering mode modifying the TT mode in single-fiber scattering, and a high-order backward scattering mode

modifying the TRT mode in single-fiber scattering.

St (θi, θr, φi, φr) =
2∑

p=0

Mtp(αp, θi, θr)Ntp(βp, θi, φi, φr)Atp(θi, φi),

At0 = λ0(θi), At1 = λ1(θi)Tr, At2 = λ2(θi)Tr

(4)

where αp and βp are the longitudinal and azimuthal roughness for each lobe p, providing independent control
of the width of the distribution; λ0, λ1, and λ2 are scale factors with longitudinal incident angle dependence.

Tr = e−σal is the transmittance through a single fiber, where σa is the absorption coefficient and l is the distance
traveled within the fiber. When interacting with multiple fibers, the path length varies, but it is not analytically

feasible to compute the exact average path length for each direction over random fiber configurations. Our

representation effectively captures the equivalent scaling and width changes needed to account for path length

variations in multiple-fiber scattering. We evaluate St in a non-integrated manner as proposed in [1]. However,
However, we assume that the thread is subpixel in size and that the scattering function, integrated over the

thread’s width, reproduces the desired scattering behavior of multiple-fiber configurations.

To verify our model, we first perform azimuthal function fitting tests in 24 different configurations with

different absorption coefficients and small circle radii (Figure 7), and for different longitudinal incident angles

separately (top two rows of Figure 8). In each fitting, the target is the angular distribution obtained from the

simulation. The parameters are the absorption coefficient (σa), the individual scale factors (λp), and the rough-
ness parameters (αp). The fitted curve is computed by evaluating 1000 different height (h) values uniformly
spaced across the width. At each height, we evaluate the angular distribution of each lobe using the logistic dis-

tribution, compute the weighted sum using the scale factors, and average the distributions over h. We use the

Adam optimizer to iteratively update the parameters until convergence. We observe that our proposed model

fits the multiple scattering distributions very well, with only minor discrepancies near the ends of the curves.

Scale Factor

cos(θi)

Figure 6: The scale factors as functions of cos(θi).

We observed that the scale factors λp(θi) follow specific trends for three lobes (Figure 6), leading to the

following parametrization of the scale factors

λ0(θi) = r0a cos(θi)
2 + r0b cos(θi) + r0c

λ1(θi) = r1a cos(θi)

λ2(θi) =
1

r2a cos(θi) + r2b
+ r2c,

(5)

With parameterized scale factors, we jointly fit different θi and present the results in the bottom two rows of

Figure 8. Our model demonstrates significantly more accurate fitting results compared to the ply-level scat-

tering model in [3]. As the incident angle becomes more oblique, we observe a large backscattering peak that
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Figure 7: Fitting multiple circle scattering using independent single circle scattering lobes.
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Figure 8: We compare the fitting results of our model, those from [3] (green curve) and our improvement on [3]

to the simulated azimuthal functions (red curve). In the top two rows, we fit each incident longitudinal angle

separately and in the bottom two rows we fit different incident angles jointly. This comparison shows that our

model produces much more accurate fitting than previous work.

eventually dominates the distribution. However, in [3], the azimuthal R lobe at the fiber level and the aggre-

gated ply-level backscattering azimuthal lobe are parameterized using a uniform distribution. This leads to a

flat fitting result, compromising accuracy across different incident angles. Through ablation, we find that intro-

ducing a Gaussian parametrization for backscattering and discarding the aggregation terms for attenuation and

azimuthal roughness significantly improves their model’s fit (red curves in Figure 8).

The PDF and sampling function of the thread BSDF are straightforward to implement, similar to the single-

fiber scattering model but with distinct normalized attenuation PDFs.

Figure 9: Energy conservation test.

We conduct an energy conservation test by fitting our thread BSDF model to the simulated distribution of

multiple-fiber scattering without absorption. We then render a head of hair geometry using the thread BSDF un-

der a constant environment. This setup emphasizes multiple scattering, making it easier to detect any excessive

energy in the model. As shown in Figure 9, our model conserves energy.
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2 3D simulation

We also perform 3D simulations of multiple-fiber scattering. Thanks to the Bravais index, we can reduce ray

tracing in 3D space to a 2D cross-sectional plane by computing an equivalent index of refraction. Specifically,

at each intersection, we sample a new ray direction using the microfacet BSDF, following the method proposed

in [4]. We track the longitudinal angle, and when the ray enters a fiber, we compute the equivalent index of

refraction (η) corresponding to the current oblique angle. Additionally, we calculate the Fresnel factor and the
ray’s travel distance in 3D space based on η.
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Figure 10: Scattering intensity plot with roughness value 0.1.

3 Simulation and Rendering

Yarn geometry simulation Yarn-level geometry plays a critical role in reproducing the visual appearance

of woven fabrics. [5] represented yarn centerlines using parametric curves, while [6] employed a reduced

simulationmodel where yarn deformationwas restricted to the height direction. In contrast, ourmethod utilizes a

full physically-based simulation, enabling amore accurate representation of yarn geometry and its deformations.

We adopt the simulation method in [7] to generate the geometric structure of yarns in woven fabrics. For

each cloth sample, a repeating patch is extracted based on the woven pattern. The initial yarn shapes are defined

as parameterized curves derived from this pattern. These initial shapes are then relaxed into their deformed

configurations using physically-based simulation. The simulation incorporates stretching and bending energy

terms, while yarn contraction is adjusted to account for tension introduced during the weaving process. Periodic

boundary conditions are applied to ensure that the patch is tileable seamlessly. Once relaxed, the patch is tiled

to construct and render the complete fabric.

Twisted plies We obtain the yarn geometry through physically-based simulation, where each yarn is modeled

as an elastic rod. Optionally, we model twisted plies as circularly helical curves around the yarn’s center line.

For a yarn centered on the Z-axis, each ply follows the form [8]:

S(z) := (Sx(z), Sy(z), z), (6)

with

Sx(z) = Rply cos(2πz/αply + θply),

Sy(z) = Rply sin(2πz/αply + θply).
(7)

where Rply is the radius of the helix, αply controls the twist rate and θply provides an initial phase of the twist.
If we want to model twisted plies in thread inversion, we can directly apply the above formulation since

the captured threads are straight. This allows us to compute the points through which the twisted plies pass.

We then fit B-spline curves through these points, and the fitted B-spline control points are inputted into the

rendering process for both forward and inverse rendering of the threads.
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To model twisted plies around non-straight yarns from the simulation, we first process the polyline output

from the simulation and determine the normal and binormal for each segment. Assume the tangents are ti,

the normals are ni, the binormals are bi. Given the normal n0 and the binormal b0 of the first segment, we

can compute the normals and binormals for the rest of the segments using parallel transport [9]. The parallel

transport from a unit vector r1 to another unit vector r2 is the minimum rotation that aligns r1 with r2 and can

be formally computed as

Pr2r1 ≡ R (r1 × r2/ |r1 × r2| ,∠ (r1, r2)) , (8)

where R(r, ψ) is the rotation about the unit vector r by an angle ψ, and ∠ (r1, r2) is the angle between r1 and
r2. From segment i and i + 1, we use parallel transport to compute the rotation matrix P

ti+1

ti
using the tangent

vectors ti and ti+1, and rotate ni and bi to get ni+1 and bi+1 respectively. Assume that the yarn center line is

Y(z) written as a function of the length parameter z. Then we can write the twisted plies as

C(z) = Y(z) + Sx(z)n(z) + Sy(z)b(z). (9)

Two-scale rendering Rendering human-scale cloth is challenging, and the brute-force method of tiling the

entire fabric is impractical. We leverage the two-scale rendering method proposed in [5] to efficiently render

the fabric. Specifically, we implement a new integrator in Mitsuba 3 [10]. We assign a Boolean parameter

to each object to denote whether it should be rendered using the two-scale rendering method and treat fabric

and non-fabric objects separately. We assume the woven fabric is tiled from a patch with 6 warp yarns and

6 weft yarns, and only one copy needs to be stored, which requires just 6.6KB of memory. The patches are

instanced, allowing us to perform ray intersections over an infinite domain. The two-scale rendering approach

considers a macro scale for the fabric surface, which is represented using a triangle mesh in the scene, and a

micro scale for the yarns. We first generate rays from the camera and compute their intersection with the macro

surface. Then, we sample a light direction and transform the intersection point and the directions into the local

patch space, computing the intersection in that space. Next, we start path tracing at the micro-scale. We sample

the thread BSDF and simulate ray interaction with the patch, performing next-event estimation until the ray

exits the micro surface. We then transform the ray back into world space and continue the macro-path tracing.

This method allows us to achieve fast and accurate rendering of woven fabric. In Figure 11, we validate our

implementation by comparing the rendering of a yarn plane by tracing the ground truth geometry and using the

two-scale rendering with a constant environment light.

Ref Two-scale rendering

Figure 11: We validate two-scale rendering by rendering a yarn plane under constant lighting.

4 Fabric Appearance Prediction

As explained in the main paper, to validate that our method accurately predicts the appearance of the cloth, we

acquire 16 fabric samples along with the corresponding threads used to make these samples. We render the

fabric wrapped around a cylinder and compare it with the captured photos. We observe a highlight band with a

yellow hue in the middle. As discussed in [11], the width of the highlight depends on the slope of the underlying

yarns, and we achieve the desired width of the highlight by adjusting the amplitude variation as the yarn extends

beyond the 2D weaving plane. In the following figure, we examine the influence of longitudinal roughness and

yarn amplitude on the highlight.
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Figure 12: We render cloth wrapped around a cylinder with different longitudinal roughnesses (α) and scale the
yarn amplitude using various scale factors. We find that longitudinal roughness primarily controls the sharp-

ness of the highlight’s boundary, while yarn amplitude controls the width of the highlight—a larger amplitude

corresponds to a wider highlight.
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In addition to the 16 silk fabric samples, we also obtain two rayon fabric samples, manually woven into a

plain weave. One sample uses pink rayon threads for both the warp and weft yarns, while the other replaces

the warp yarns with blue rayon threads. We also acquire the corresponding pink and blue rayon threads used to

make these samples. Our pipeline accurately predicts the appearance of the fabric wrapped around the cylinder.

Unlike the silk samples, these rayon fabrics exhibit no obvious highlight band, likely due to the greater height

variations in the threads.

Reference Prediction

Figure 13: We compare our prediction of the fabric on the right to the captured photos on the left, demonstrating

a matching appearance.
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