
A Full-Wave Reference Simulator for Computing Surface Reflectance
YUNCHEN YU, Cornell University, USA
MENGQI XIA, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
BRUCE WALTER, Cornell University, USA
ERIC MICHIELSSEN, University of Michigan, USA
STEVE MARSCHNER, Cornell University, USA

Surface Reciprocal OHS Reciprocal GHS Kirchhoff Tangent Plane Our Simulation

Fig. 1. Wavelength-dependent BRDFs of two surfaces, computed using the original Harvey-Shack model, the generalized Harvey-Shack model, the Kirchhoff
model, the tangent plane method in [Xia et al. 2023], and our simulation. The incident direction is given by 𝜃𝑖 = 36°, 𝜙𝑖 = 90°, and BRDF values are visualized
for a large collection of outgoing directions. The models predict similar BRDFs for the smooth surface with isotropic bumps, while for the surface with
spherical pits, our simulation predicts brighter color bands in the BRDF, which likely result from interference between reflection of different orders.

Computing light reflection from rough surfaces is an important topic in
computer graphics. Reflection models developed based on geometric op-
tics fail to capture wave effects such as diffraction and interference, while
existing models based on physical optics approximations give erroneous
predictions under many circumstances (e.g. when multiple scattering from
the surface cannot be ignored). We present a scalable 3D full-wave simulator
for computing reference solutions to surface scattering problems, which
can be used to evaluate and guide the development of approximate mod-
els for rendering. We investigate the range of validity for some existing
wave optics based reflection models; our results confirm these models for
low-roughness surfaces but also show that prior rendering methods do not
accurately predict the scattering behavior of some types of surfaces.

Our simulator is based on the boundary element method (BEM) and
accelerated using the adaptive integral method (AIM), and is implemented to
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execute on modern GPUs. We demonstrate the simulator on domains up to
60 × 60 × 10 wavelengths, involving surface samples with significant height
variations. Furthermore, we propose a new system for efficiently computing
BRDF values for large numbers of incident and outgoing directions at once,
by combining small simulations to characterize larger areas. Our simulator
will be released as an open-source toolkit for computing surface scattering.

CCS Concepts: • Computing methodologies→ Reflectance modeling.

Additional Key Words and Phrases: wave optics, material appearance, scat-
tering, diffraction
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1 INTRODUCTION
Accurately modeling light reflection from surfaces, which arises
from the interaction of light with various kinds of small-scale geo-
metric structures, is important for rendering realistic and visually
compelling images. A surface reflection model in computer graphics
typically starts with some assumptions about the target surface
structure, and then applies an approximate model of optics to derive
a bidirectional reflectance distribution function (BRDF). Many reflec-
tion models are based entirely on geometric optics and assume light
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travels as rays, and are thus inaccurate for surfaces with feature sizes
comparable to visible light wavelengths. Some other models involve
wave optics and use approximate diffraction theories, including the
Beckmann-Kirchhoff theory [Beckmann and Spizzichino 1987] and
the Harvey-Shack family of models [Krywonos 2006].

Most models provide smooth mean BRDFs corresponding to dis-
tributions of surfaces, predicting reflection in terms of large-area
averages. Some models use either ray or wave optics to compute
spatially-varying solutions with high-resolution details [Yan et al.
2016, 2018], but even when modeling the propagation of light as
electromagnetic waves, these models still contain significant ap-
proximations. Given this large collection of reflection models, it
is difficult to determine which models are accurate in a specific
context, as a ground truth solution is not available.

The goal of this paper is to provide a reference simulation tool that
faithfully models the propagation of light as described by Maxwell’s
equations and computes optical scattering from small areas of sur-
face microgeometry with no approximation other than numerical
discretization, to compute surface BRDFs with high angular and
spatial resolution. To account for interference effects, the simulation
should scale up to as large as the coherence area of common light
sources like sunlight, or tens of microns across.

Reaching this scale, which is large for full wave simulations,
requires careful attention to memory usage and performance. Our
simulator represents surfaces as height fields, allowing a regular-
grid discretization into quadrilateral basis elements, which leads to
important simplifications and efficient storage of coefficients. We
solve for scattered fields using the boundary integral formulation, an
established method in computational electromagnetics, accelerated
by the adaptive integral method (AIM), an approach based on 3D
Fast Fourier Transform that was originally proposed for accelerating
radar calculations. Our accelerated simulations are implemented to
run efficiently on modern GPUs, and we demonstrate simulations
on domains up to 60 × 60 × 10 wavelengths.

We also propose a new system for solving the graphics-specific
problem of efficiently computing BRDF values for a large collection
of incident and outgoing directions to completely characterize the
bidirectional scattering behavior of a surface. While our simula-
tion is not usually directly applicable to rendering, its high accu-
racy and broad applicability make it a useful research tool that can
evaluate the accuracy and range of validity of approximate reflec-
tion models. Our open-source simulation code can be accessed at
https://github.com/blaire9989/BEMsim3D.

2 RELATED WORK
In this section we discuss existing surface reflection models as well
as relevant methods in computational electromagnetics.

2.1 Wave Optics Based Reflection Models
In computer graphics, most surface scattering models are based
on geometric optics (e.g. [Burley 2012; Cook and Torrance 1982;
Oren and Nayar 1994; Walter et al. 2007]) due to its low cost and
complexity. Prior methods using wave optics have generally re-
lied on physical optics approximations such as Beckmann-Kirchoff
[Beckmann and Spizzichino 1987] and Harvey-Shack [Harvey 1979;

Krywonos 2006; Krywonos et al. 2011], which are first-order (single
scatter), scalar approximations to the full wave equations. These
have been used to estimate spatially averaged BRDFs for a variety of
surface types, such as Gaussian random [He et al. 1991; Lanari et al.
2017], stationary periodic [Dhillon et al. 2014; Stam 1999; Toisoul
and Ghosh 2017], multi-level planar [Levin et al. 2013], tabulated
[Dong et al. 2016], and scratched [Werner et al. 2017]. Physical
optics has also been used to estimate the spatially varying appear-
ance of tabulated [Yan et al. 2018] and statistically random surfaces
[Steinberg and Yan 2022]. Hybrid surface models apply physical
optics models for certain surface components, such as small scale
roughness [Falster et al. 2020; Holzschuch and Pacanowski 2017],
thin films, [Belcour and Barla 2017], or suspended platelets [Guillén
et al. 2020], while using simpler geometric optics models for larger
scales. One of the goals of our work is to test the accuracy of some
physical optics approximations.

Physical optics has also been used to approximate longer range,
inter-surface effects [Cuypers et al. 2012; Steinberg et al. 2022]. Wave
optics based scattering methods, including the Lorenz-Mie theory
and the T-matrix method [Bohren and Huffman 2008; Mishchenko
et al. 2002], have also been applied to volumetric scattering [Frisvad
et al. 2007; Guo et al. 2021]. Moreover, generalized ray tracing tech-
niques involving complex values have been applied to rendering
natural phenomena and structural colors [Sadeghi et al. 2012; Shi-
mada and Kawaguchi 2005]. Inter-surface and volumetric scattering
currently lie beyond the scope of our work.

2.2 Computational Electromagnetics and Graphics
The most widely used computational methods in electromagnet-
ics include the finite-difference time-domain (FDTD) method, the
finite element method (FEM), and the boundary element method
(BEM). FDTD simulations (e.g. [Oskooi et al. 2010]), which solve
the differential form of Maxwell’s equations based on time step-
ping and 3D spatial discretization, have been used to predict the
appearance of wavelength-scale structures [Auzinger et al. 2018;
Musbach et al. 2013], but its cost increases rapidly with domain size,
limiting it to 2D domains or 3D domains much smaller than those
we use. FEM, which also requires 3D discretization, is similarly lim-
ited in simulation size. BEM formulates a scattering problem into
integral equations on the surface of the scattering object [Gibson
2021], which lowers the dimension of the discretization and provides
better scalability. BEM was previously applied to fibers modeled
as generalized cylinders [Xia et al. 2020], but this relied on using
translational symmetry to reduce the problem to 2D.

Varied numerical techniques have been used to accelerate BEM,
including the fast multipole method (FMM) [Liu and Nishimura 2006;
White and Head-Gordon 1994], the adaptive integral method (AIM)
[Bleszynski et al. 1996], and the sparse-matrix canonical grid method
[Liao et al. 2016; Pak et al. 1997]. Our work uses BEM because of its
scalability, and uses AIM to accelerate the computation thanks to
its efficiency for domains that are small along one axis.

3 FULL-WAVE SIMULATION
In this work, we present our 3D full-wave simulations for computing
spatially-varying surface BRDFs with high resolution details. Our
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Table 1. List of symbols.

𝜔 Angular frequency of light
𝜀 Permittivity of a homogeneous region
𝜇 Permeability of a homogeneous region
E Electric field
H Magnetic field
J Electric current density
M Magnetic current density
𝜆 Wavelength of the light in vacuum
𝜂 Refractive index of a particular medium
𝑘 Wavenumber of the light in a particular medium
r, r′ Position of points in the 3D space
𝐺 (r, r′) Green’s function
𝑤 Waist of a Gaussian beam
𝜃 Divergence of a Gaussian beam
f𝑚, f𝑛 Vector basis functions
𝜓𝑚, 𝜉𝑛 Scalar components of basis functions
Λ Point source approximation coefficient matrix
𝜔𝑖 , 𝜔𝑜 Incident and outgoing directions
𝑓𝑟 (𝜔𝑖 , 𝜔𝑜 ) BRDF values

overall method starts with a surface described by a height field and
its material properties (complex refractive index), together with a
target point on the surface. To compute the BRDF for a particular
incident direction, we define an incident field that propagates to-
wards the target point from the given direction. The incident field
is then used in our surface scattering simulation, which solves for
the resulting scattered electromagnetic field. The scattered field is
evaluated in the far-field limit to produce a full hemisphere of BRDF
values for all outgoing directions.

Our simulation is based on the 3D boundary element method
(BEM), which is discussed in detail by Gibson [Gibson 2021]; Xia
et al. [Xia et al. 2020] provide a summary of the method in a 2.5D
setting. In this section we state the principles of BEM in our context.
In Section 4 we describe the computational methods for implement-
ing BEM efficiently, and in Section 5 we describe how to efficiently
combine multiple simulations to synthesize BRDFs that are densely
sampled in both incident and scattered directions. Important sym-
bols used in these sections are summarized in Table 1.

3.1 Boundary Element Method: The Basics
BEM targets single-frequency scattering problems, which involve
incident electric and magnetic fields of a given angular frequency 𝜔

and a scattering object whose boundary divides the space into two
homogeneous regions. The constitutive parameters of the region
that contains the incident fields are given by (𝜀1, 𝜇1), and those
of the other region are given by (𝜀2, 𝜇2). Here, 𝜀1, 𝜀2 represent the
permittivity and 𝜇1, 𝜇2 represent the permeability.

Notably, we work with complex-valued field quantities which
carry both amplitude and phase information. The field quantities
are all assumed to be time-harmonic, with their time dependence
given by 𝑒 𝑗𝜔𝑡 . The term 𝑒 𝑗𝜔𝑡 is suppressed throughout the text.

Maxwell’s Equations and Surface Currents. Solving wave scat-
tering problems fundamentally relies on Maxwell’s equations. The

Fields:

Fields:

Fig. 2. An overview of the boundary element method. The space is divided
into two regions by the scattering surface, and fictitious currents are intro-
duced on both sides of the surface.

time-harmonic Maxwell’s equations are given by
∇ × E = −M − 𝑗𝜔𝜇H
∇ × H = J + 𝑗𝜔𝜀E

(1)

where E and H are the electric and magnetic fields, and J and M are
the time-harmonic electric and magnetic current densities.

Solving a scattering problem using BEM involves dividing the
space into two regions using the boundary of the scattering object
and introducing fictitious surface currents on both sides of the object
boundary, as illustrated in Fig. 2. Maxwell’s equations characterize
the relationships between the fields and currents in each region, and
the two regions are connected through boundary conditions. These
relationships and constraints give rise to equations that determine
the surface currents, effectively converting the job of computing
field values in a 3D space into the simpler task of solving for current
densities on a 2D boundary.

Source-Field Relationships. The total fields in the regions 𝑅1, 𝑅2
are denoted by (E1,H1) and (E2,H2), and the incident fields in 𝑅1
are given by E𝑖 and H𝑖 , as shown in Fig. 2. The fields E𝑠 and H𝑠 are
the introduced scattered fields, which propagate outward from the
scattering surface and satisfy the relationships

E1 = E𝑖 + E𝑠 ; H1 = H𝑖 + H𝑠 (2)

The currents (J1,M1) and (J2,M2) in Fig. 2 can be considered the
sources that radiate the fields (E𝑠 ,H𝑠 ) and (E2,H2). The fields E𝑠
and H𝑠 can be seen as generated by the currents J1,M1, radiating in
a homogeneous medium with constitutive parameters (𝜀1, 𝜇1). E2
and H2 can be seen as generated by the currents J2,M2, radiating
in a homogeneous medium with constitutive parameters (𝜀2, 𝜇2).

The source-field relationships for homogeneous media are derived
from Maxwell’s equations and are given by

E(r) = − 𝑗𝜔𝜇 (LJ) (r) − (KM) (r)
H(r) = − 𝑗𝜔𝜀 (LM) (r) + (KJ) (r) (3)

where

(LX) (r) = [1 + 1
𝑘2 ∇∇·]

∫
𝑉

𝐺 (r, r′)X(r′)𝑑r′

(KX) (r) = ∇ ×
∫
𝑉

𝐺 (r, r′)X(r′)𝑑r′
(4)
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Here the domain of integration 𝑉 is the homogeneous medium,
and when L,K are applied to surface current densities,𝑉 reduces to
the boundary of the medium—in our case, the scattering surface. 𝑘 is
the wavenumber, given by𝑘 = 2𝜋𝜂/𝜆, where𝜂 is the refractive index
of the medium and 𝜆 is the source field’s wavelength in vacuum.
𝐺 (r, r′) is the 3D Green’s function for the scalar Helmholtz equation

𝐺 (r, r′) = 𝑒− 𝑗𝑘𝑟

4𝜋𝑟 where 𝑟 = |r − r′ |. (5)

Eq. 3 can be applied in both 𝑅1 and 𝑅2, giving rise to

E𝑠 (r) = − 𝑗𝜔𝜇1 (L1J1) (r) − (K1M1) (r)
H𝑠 (r) = − 𝑗𝜔𝜀1 (L1M1) (r) + (K1J1) (r)

(6)

and
E2 (r) = − 𝑗𝜔𝜇2 (L2J2) (r) − (K2M2) (r)
H2 (r) = − 𝑗𝜔𝜀2 (L2M2) (r) + (K2J2) (r)

(7)

Since L,K assume different forms in different media, we use the
subscripts 1 and 2 to distinguish between these forms.

Boundary Conditions. The tangential components of the electric
and magnetic fields need to be continuous across the boundary
surface, giving us

n × (E1 − E2) = 0; n × (H1 − H2) = 0 (8)

In addition, the net current densities on the boundary are required
to be zero, meaning that

J = J1 = −J2; M = M1 = −M2 (9)

Integral Equations. Combining Eq. 6, 7, 8 and 9 gives us

[ 𝑗𝜔𝜇1 (L1J) (r) + 𝑗𝜔𝜇2 (L2J) (r) + (K1M) (r) + (K2M) (r)]tan
= [E𝑖 (r)]tan

[(K1J) (r) + (K2J) (r) − 𝑗𝜔𝜀1 (L1M) (r) − 𝑗𝜔𝜀2 (L2M) (r)]tan
= −[H𝑖 (r)]tan

(10)

which hold at every point r on the surface. Here, the “tan” notation
refers to the component of the field that is tangent to surface at
r. These equations are the PMCHWT [Gibson 2021] electric field
integral equation (EFIE) and magnetic field integral equation (MFIE).

Solving for Current Densities. To solve for the current densities
J,M, we discretize the object surface into a collection of basis el-
ements and locally assign low-order basis functions to each basis
element. The surface currents can then be written as

J(r) =
𝑁∑︁

𝑚=1
𝐼J𝑚f𝑚 (r); M(r) =

𝑁∑︁
𝑛=1

𝐼M𝑛f𝑛 (r) (11)

where 𝑁 is the total number of basis functions. To solve for the
unknown coefficients in Eq. 11, we apply a Galerkin-type method
and combine the EFIE and MFIE into a linear system:[

𝐴EJ 𝐴EM
𝐴HJ 𝐴HM

] [
𝐼J
𝐼M

]
=

[
𝑉E
𝑉H

]
(12)

where

𝐴𝑚𝑛
EJ =

∫
𝑆

f𝑚 (r) · [ 𝑗𝜔𝜇1 (L1f𝑛) (r) + 𝑗𝜔𝜇2 (L2f𝑛) (r)]𝑑r (13)

𝐴𝑚𝑛
EM =

∫
𝑆

f𝑚 (r) · [(K1f𝑛) (r) + (K2f𝑛) (r)]𝑑r (14)

𝐴𝑚𝑛
HJ =

∫
𝑆

f𝑚 (r) · [(K1f𝑛) (r) + (K2f𝑛) (r)]𝑑r (15)

𝐴𝑚𝑛
HM = −

∫
𝑆

f𝑚 (r) · [ 𝑗𝜔𝜀1 (L1f𝑛) (r) + 𝑗𝜔𝜀2 (L2f𝑛) (r)]𝑑r (16)

and

𝑉𝑚
E =

∫
𝑆

f𝑚 (r) · E𝑖 (r)𝑑r (17)

𝑉𝑚
H = −

∫
𝑆

f𝑚 (r) · H𝑖 (r)𝑑r (18)

One might have noticed that the EFIE and MFIE assume very
similar forms, while we have applied an extra factor of −1 to both
sides of the MFIE, resulting in a factor of −1 in Eq. 18. We use this
specific form of the linear system thanks to its symmetry.

In fact, observing Eq. 13 and 16 as well as the L operator given
in Eq. 4, we notice that

𝐴EJ = 𝐴𝑇EJ; 𝐴HM = 𝐴𝑇HM (19)

Inspecting Eq. 14 and 15 and the K operator in Eq. 4 gives us

𝐴EM = 𝐴𝑇EM; 𝐴HJ = 𝐴𝑇HJ; 𝐴EM = 𝐴HJ (20)

Eq. 19 and 20 show that our linear system in Eq. 12 is symmetric,
allowing us to evaluate fewer matrix elements and use an iterative
solver that requires less memory. After solving for the surface cur-
rent densities, we can again apply Eq. 6 to compute the scattered
fields that propagate outward from the scattering surface.

3.2 Rough Surface Scattering: The Specifics
We now introduce our specific approach to represent and discretize
the surfaces involved in our simulations.

Rough Surface Samples. The general illustration in Fig. 2 repre-
sents the scattering surface as infinitely large, dividing the space
into two half spaces. Each simulation, however, needs to be limited
to a finitely large computational domain. We make this possible by
our specific choice of incident fields.

Each finitely large surface sample is represented as a 2D height
field. For a surface sample with size 𝐿𝑥 × 𝐿𝑦 , we choose a step size
𝑑 and further define the sequences {𝑥𝑠 }, {𝑦𝑡 } such that

𝑥𝑠 = 𝑠 · 𝑑 𝑠 = 0, 1, ..., 𝑁𝑥

𝑦𝑡 = 𝑡 · 𝑑 𝑡 = 0, 1, ..., 𝑁𝑦
(21)

where 𝑁𝑥 = 𝐿𝑥/𝑑 and 𝑁𝑦 = 𝐿𝑦/𝑑 . For all pairs of indices (𝑠, 𝑡),
height data are provided as 𝑧𝑠,𝑡 = ℎ(𝑥𝑠 , 𝑦𝑡 ) from some height field
function ℎ. See Fig. 3 for an illustration.

Note that the height variations on the surface are in very small
scale—typically within a few microns (a few wavelengths of visible
light), and the surface is considered globally flat, with the positive z
direction as its normal on the macro-scale.
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Fig. 3. A rough surface sample represented as a 2D surface height field, and
discretized into quadrilateral basis elements.

Basis Elements and Functions. Since our rough surface is repre-
sented as a 2D height field defined on an xy-grid, we take advantage
of the grid structure and use quadrilateral basis elements to dis-
cretize the surface. As shown in Fig. 3 (b), the surface is tiled into
𝑁𝑥 ×𝑁𝑦 elements, each with an xy footprint of size 𝑑×𝑑 . Despite the
“8-10 steps per wavelength” convention for basis element size, the
xy footprints of our quadrilateral elements may need to be smaller
in some cases, as the rough surface contains nonzero slopes that
lengthen the actual basis elements. In most of our simulations, we
normally use 𝑑 ≈ 𝜆/16 for our minimum wavelength.

We adopt the first-order vector basis functions proposed in [Djord-
jevic and Notaros 2004]. Each basis element is parametrized with
respect to two variables 𝑢, 𝑣 , both in the range of [−1, 1]. The shape
of the basis element is represented analytically by a bilinear function
r(𝑢, 𝑣), which for the element with index (𝑠, 𝑡) is given by

r(𝑢, 𝑣) = (1 − 𝑢) (1 − 𝑣)
4 p𝑠−1,𝑡−1 +

(1 − 𝑢) (1 + 𝑣)
4 p𝑠−1,𝑡

+ (1 + 𝑢) (1 − 𝑣)
4 p𝑠,𝑡−1 +

(1 + 𝑢) (1 + 𝑣)
4 p𝑠,𝑡

(22)

where p𝑠,𝑡 = (𝑥𝑠 , 𝑦𝑡 , 𝑧𝑠,𝑡 ). Four basis functions are defined on each
quadrilateral element in the following form:

f1 (𝑢, 𝑣) =
(1 − 𝑢)
𝐽 (𝑢, 𝑣)

𝜕r(𝑢, 𝑣)
𝜕𝑢

; f2 (𝑢, 𝑣) =
(1 + 𝑢)
𝐽 (𝑢, 𝑣)

𝜕r(𝑢, 𝑣)
𝜕𝑢

;

f3 (𝑢, 𝑣) =
(1 − 𝑣)
𝐽 (𝑢, 𝑣)

𝜕r(𝑢, 𝑣)
𝜕𝑣

; f4 (𝑢, 𝑣) =
(1 + 𝑣)
𝐽 (𝑢, 𝑣)

𝜕r(𝑢, 𝑣)
𝜕𝑣

(23)

where the Jacobian 𝐽 (𝑢, 𝑣) is defined as:

𝐽 (𝑢, 𝑣) =
���� 𝜕r(𝑢, 𝑣)𝜕𝑢

× 𝜕r(𝑢, 𝑣)
𝜕𝑣

���� (24)

As illustrated in Fig. 4, the basis function f𝑖 represents the flux
of the surface currents across the edge 𝑒𝑖 of the basis element, for
𝑖 = 1, 2, 3, 4. It can be shown that among the four local basis functions,
f𝑖 is the only basis function with nonzero flux of the currents across
the edge 𝑒𝑖 . To ensure continuity of the flux, the two basis functions
related to each edge (defined on the two neighboring elements that
share this edge) share the same coefficient.

Gaussian Beam Incidence. Since we limit our simulation domain
to a finite area, we want to similarly constrain the size of the incident
field. This way, the current densities induced on the surface can
be considered as only having nonzero magnitudes within a finite
region, which is usually slightly larger than the illuminated area.
Thus, Gaussian beams are great candidates for the incident fields.

Fig. 4. Four basis functions are defined on each quadrilateral basis element,
each associated with the flux of the surface currents across one edge.

ωi

v2

v2
w1

w2

ω

ω’
θ

divergence θwaist w

focus plane P

θ ’w
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(b)

(a)

w’

center o

Fig. 5. Illustration of Gaussian beams. (a) A Gaussian beam and its focus
plane, center, waist, and divergence. (b) A Gaussian beam that illuminates a
surface at some incident angle, with different waists 𝑤1, 𝑤2 along the two
transverse directions v1, v2. (c) Gaussian beams incident on the surface from
different directions have the same illumination area, as the beam waists are
chosen according to incident directions.

A Gaussian beam is an electromagnetic wave whose amplitude
is a 2D Gaussian function in the plane perpendicular to its prop-
agation direction [Paschotta 2008]. As illustrated in Fig. 5 (a), a
Gaussian beam is characterized by a focus plane 𝑃 , a center o, and
a beam waist 𝑤 . At each point q on the focus plane 𝑃 , the field
amplitude is proportional to 𝑒−𝑟

2/𝑤2 , where 𝑟 = |q − o|. Thus, at
points whose distance to o is greater than 2.5𝑤 , the field intensity
(squared amplitude) can be considered negligible.

A Gaussian beam can be used to model nearly collimated illumi-
nation, while it also has a divergence 𝜃 , as shown in Fig. 5 (a), which
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is inversely proportional to 𝑤 . For a beam with wavelength 𝜆 that
propagates in a medium with refractive index 𝜂, we have:

𝜃 =
𝜆

𝜋𝜂𝑤
(25)

Some Gaussian beams have different waists along two transverse
directions, giving them an elliptical cross section on the focus plane
and different divergences on the two axes. In our work, we use
elliptical Gaussian beams for modeling non-normal incidence. As
shown in Fig. 5 (b), to model an incident direction 𝜔𝑖 (which points
away from the surface), a Gaussian beam that propagates along
−𝜔𝑖 can be used. The vector v1 is defined to be perpendicular to
the surface normal and 𝜔𝑖 , and v2 is perpendicular to 𝜔𝑖 and v1.
We use a Gaussian beam with different waists 𝑤1,𝑤2 along the two
transverse directions v1, v2

𝑤1 = 𝑤 ; 𝑤2 = 𝑤 cos𝜃𝑖 (26)

where 𝜃𝑖 is the zenith angle characterizing 𝜔𝑖 and 𝑤 is the waist
of the Gaussian beam normally incident on the surface. Since our
simulations are used for deriving BRDFs, we may model illumination
from many incident directions. For the same surface, we want similar
illumination area from Gaussian beams for all the directions, and
the cos𝜃𝑖 factor in Eq. 26 guarantees this, as illustrated in Fig. 5 (c).
We refer to 𝑤 as the primary waist.

Lastly, the field generated by a Gaussian beam has an exact form
as a linear combination of plane waves, while it also has a paraxial
approximation that makes the field much easier to evaluate. We find
the paraxial approximation sufficiently accurate in our context, and
use the general form of paraxial Gaussian beams in [Kiselev and
Plachenov 2019] to model circular and elliptical Gaussian beams.

4 IMPLEMENTATION AND ACCELERATION
Without any acceleration, full-wave simulations in 3D are computa-
tionally expensive, even for very small problems. In this section, we
discuss our acceleration method and implementation details.

4.1 The Adaptive Integral Method
Our 3D simulations typically result in very large linear systems,
so explicitly computing and storing every element in the matrix
𝐴 in Eq. 12 will not be feasible. The symmetric linear system is
instead solved iteratively, and the matrix-vector multiplication step
is accelerated using the adaptive integral method (AIM).

Approximating Matrix Elements. AIM was originally proposed
by Bleszynski et. al. [1996], and is a good match for our simulations
thanks to its low computational complexity for our problems and
its relatively simple implementation. In AIM, the effects of each
basis function are approximated by a set of point sources on a global
3D grid, and the effects of all the basis functions are propagated
together, with the computations accelerated using FFT.

As detailed in our supplemental document, we can expand the
dot and cross product terms as well as the L and K operators in Eq.
13–16 to rewrite every element in 𝐴EJ, 𝐴EM, 𝐴HJ, and 𝐴HM as the
linear combination of some terms in the form of∫

f𝑚

∫
f𝑛
𝜓𝑚 (r)𝑔(r − r′)𝜉𝑛 (r′)𝑑r′𝑑r (27)

Fig. 6. A Cartesian grid surrounding the surface sample, illustrated in 2D.
The red boxes indicate that each basis function can be approximated by
a collection of nearby point sources. The Cartesian grid and point source
approximation are established in 3D in our simulations.

where the scalar functions 𝜓𝑚, 𝜉𝑛 come from the basis functions
f𝑚, f𝑛—they could be the 𝑥 , 𝑦, or 𝑧 component of the vector basis
functions, or could be related to the divergence of f𝑚, f𝑛 . The func-
tion 𝑔(r − r′) is related to the 3D Green’s functions. As implied
from the way we represent it, 𝑔 is shift-invariant, with its value
only dependent on r − r′. See Eq. S.16–S.20 in our supplemental
document for the exact expressions of each matrix element.

To approximate Eq. 27, we create a 3D Cartesian grid surrounding
the surface, and replace the scalar functions𝜓𝑚, 𝜉𝑛 with linear com-
binations of Dirac Delta functions localized at nearby grid nodes:

𝜓𝑚 (r) ≈ 𝜓𝑚 (r) :=
∑︁
p∈𝑆𝑚

Λ𝑚p𝛿
3 (r − p)

𝜉𝑛 (r′) ≈ 𝜉𝑛 (r′) :=
∑︁
q∈𝑆𝑛

Λ′
𝑛q𝛿

3 (r′ − q)
(28)

Here, 𝑆𝑚 and 𝑆𝑛 are the sets of grid points near the supports of
𝜓𝑚, 𝜉𝑛 , as illustrated in Fig. 6. The coefficients Λ𝑚p,Λ

′
𝑛q are com-

puted by matching the field radiated by each basis function and that
radiated by the collection of point sources, as described in [Yang
and Yilmaz 2011] and discussed in our supplemental document.
Substituting Eq. 28 into 27 reduces the integral to∑︁

p∈𝑆𝑚

∑︁
q∈𝑆𝑛

Λ𝑚p𝑔(p − q)Λ′
𝑛q (29)

Eq. 29 is a good approximation to Eq. 27 when the supports of𝜓𝑚
and 𝜉𝑛 (equivalently, their respective quadrilaterals) are far apart.

Base and Correction Matrices. Based on Eq. 29, we define a set
of base approximation matrices 𝐵EJ, 𝐵EM, 𝐵HJ, and 𝐵HM that approx-
imate 𝐴EJ, 𝐴EM, 𝐴HJ and 𝐴HM. These base matrices are accurate for
entries involving pairs of basis elements that are far apart. These
matrices can each be written as the linear combination of some
convolution terms in the form of Λ1𝐺Λ𝑇2 , where Λ1,Λ2 are matrices
that contain coefficients in the Dirac Delta function expansions, and
𝐺 is a matrix that stores the 𝑔 function values. Eq. S.26–S.27 in the
supplemental document contains expressions for the 𝐵 matrices.

The difference between the aforementioned 𝐴 and 𝐵 matrices can
be considered sparse, because most entries in the 𝐵 matrices, which
involve far-apart basis elements, are very accurate. We exploit this
sparseness by defining the correction matrices 𝐶EJ, 𝐶EM, 𝐶HJ, and
𝐶HM whose entries are only nonzero if their basis elements are
sufficiently close to each other. The correction matrix elements are
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defined as follows:

𝐶𝑚𝑛
X =

{
𝐴𝑚𝑛

X − 𝐵𝑚𝑛
X 𝑑𝑚𝑛 ≤ 𝑑near

0 otherwise
X ∈ {EJ, EM,HJ,HM} (30)

where 𝑑𝑚𝑛 is the distance between the centers of basis functions
𝑚 and 𝑛 and 𝑑near is a distance threshold chosen to control the
approximation error. In summary, we can write

𝐴EJ ≈ 𝐵EJ +𝐶EJ; 𝐴EM ≈ 𝐵EM +𝐶EM;
𝐴HJ ≈ 𝐵HJ +𝐶HJ; 𝐴HM ≈ 𝐵HM +𝐶HM

(31)

Fast Matrix-Vector Multiplication. Our approximation of the
BEM matrices allows fast matrix-vector multiplication for an itera-
tive solver. The sparse 𝐶 matrices are computed before the iterative
solving, and this step generally takes up a very small fraction of
time in a simulation. In iterative solving, multiplying these sparse
matrices with vectors is fast. Also, multiplying a vector by one of the
𝐵 matrices reduces to multiplying that vector by a few convolution
terms, which involves computing

𝑦1 = Λ𝑇2 𝑥 ; 𝑦2 = 𝐺𝑦1; 𝑦3 = Λ1𝑦2 (32)

for different combinations of 𝑥 , Λ1, 𝐺 , and Λ2. Here, Λ1,Λ2 are
𝑁𝑓 ×𝑁𝑝 coefficient matrices, where 𝑁𝑓 is the total number of basis
functions in the computation domain, and 𝑁𝑝 is the total number of
grid points in the Cartesian grid. In practice, we use 48 Dirac Delta
functions to approximate each basis function, so there are only 48
nonzero elements in each row of Λ1,Λ2, making them very sparse.
Thus, the steps 𝑦1 = Λ𝑇2 𝑥 and 𝑦3 = Λ1𝑦2 are fast.

The vectors 𝑦1, 𝑦2 both represent discrete signals on the 3D grid,
and the matrix 𝐺 represents the shift-invariant function 𝑔. The
computation of 𝑦2 = 𝐺𝑦1 can therefore be accelerated using the
discrete Fourier transform, since this multiplication is equivalent to
convolving 𝑔 with 𝑦1:

𝑦2 = F −1{F (𝑔)F (𝑦1)} (33)

Therefore, multiplying the 𝐵 matrices with vectors does not re-
quire explicitly computing or storing any matrix elements, and can
be done efficiently using existing FFT libraries. On a surface whose
lateral dimensions are large relative to the height variations, the
number of grid points in the Cartesian grid is proportional to the
number of basis elements on the surface. Thus, the computational
complexity of a matrix-vector multiplication step is 𝑂 (𝑁 log𝑁 )
for a surface with 𝑁 basis elements. We use a MINRES solver for
complex symmetric matrices [Choi 2013] to solve the linear system.

4.2 GPU-Accelerated Iterative Solving
The AIM formulation moves the computational bottlenecks into
the FFT and sparse matrix operations, enabling an efficient imple-
mentation on the GPU. We use the cuFFT library to compute the
Fourier transforms involved in matrix-vector multiplications with
the 𝐵 matrices, and use the cuSPARSE sparse matrix library for mul-
tiplications involving the 𝐶 matrices.

To discuss our implementation choices, we first note that com-
puting the matrix-vector product

𝑦 =

[
𝐴EJ 𝐴EM
𝐴HJ 𝐴HM

] [
𝑥J
𝑥M

]
(34)

y = Ax
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y2
H




y1

E

y1
H



(a) (b)

Fig. 7. The matrix-vector multiplication process in our framework. (a) The
upper half represents the base approximation (𝐵) matrices and the lower half
represents the sparse correction (𝐶) matrices. (b) A pipeline for multiplying
a convolution term Λ1𝐺Λ𝑇2 to a vector.

can be divided into four subtasks (using Eq. 31 here):
𝑦EJ = 𝐵EJ𝑥J +𝐶EJ𝑥J; 𝑦EM = 𝐵EM𝑥M +𝐶EM𝑥M;
𝑦HJ = 𝐵HJ𝑥J +𝐶HJ𝑥J; 𝑦HM = 𝐵HM𝑥M +𝐶HM𝑥M

(35)

Eq. S.26–S.27 in our supplemental document reveal that 𝐵EJ and
𝐵HM can each be written as the sum of 8 convolution terms, while
𝐵EM and 𝐵HJ can each be written as the sum of 12 convolution
terms. Multiplying a convolution term to a vector can be done using
the pipeline in Fig. 7 (b), which involves 3 calls to the FFT (or IFFT)
routine. This pipeline needs to be executed 40 times in each MINRES
iteration, and instead of invoking the FFT routines 120 times on one
device, we use different matrix-vector multiplication modules for
small and large problems, avoiding repeated computations as much
as possible. Our small simulations require using 1 GPU, while large
simulations are implemented to run on 4 GPUs.

Small-Scale Simulations. Multiplying the 𝐵 matrices to vectors
requires computing and storing the Fourier transformed Green’s
function values (i.e. the 𝐺 matrices), as well as performing many
forward and backward FFTs, possibly storing intermediate results.
The relevant data are stored in arrays with size proportional to the
number of grid points in the 3D grid, and the cuFFT library allocates
some extra memory as the workspace for FFT computations. For
small simulations (e.g. 12𝜇𝑚 × 12𝜇𝑚), the required data arrays are
typically well under 1GB. With the available memory on a GPU (e.g.
24 GB), we can allocate one array for each shift-invariant function
𝑔𝑖 and compute the discrete Fourier transforms of these function
values, so the data F (𝑔𝑖 ) are stored for use in each MINRES iteration.

A few more data arrays are used for storing intermediate results
from the FFT steps. Since computations related to the four matrix
blocks are all performed on the same GPU, very few repeated com-
putations are needed. Moreover, in small-scale problems, the sparse
𝐶 matrices typically occupy less than 5 GB of memory, and can
easily fit into the single GPU used for simulation.

Large-Scale Simulations. In large-scale simulations (e.g. 24𝜇𝑚 ×
24𝜇𝑚), the FFT-related data arrays become large, and one such ar-
ray may occupy at least 2 GB of memory. The number of nonzero
elements in the 𝐶 matrices, which is roughly proportional to the
number of basis elements, also grows significantly with the prob-
lem size. For a 24𝜇𝑚 × 24𝜇𝑚 simulation with 960 × 960 basis ele-
ments, the memory required to store all the nonzero elements in
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𝐶EJ,𝐶EM,𝐶HJ,𝐶HM as complex floating-point numbers (plus the row
and column indices of nonzero elements) is around 20 GB.

Due to the limited memory on one GPU, we divide the compu-
tations across 4 GPUs, each used for computing the matrix-vector
multiplications associated with one matrix block (see Eq. 35). Up to
6 larger FFT-related arrays are allocated on each GPU, and they can
store the Fourier transformed Green’s function values and interme-
diate results, or serve as the FFT workspace. On each GPU, around
5GB of memory is used to store the 𝐶 matrices.

Compared to small-scale simulations, more repeated computa-
tions are needed. Still, our matrix-vector multiplication step that
uses 4 GPUs is fast. In 24𝜇𝑚 × 24𝜇𝑚 simulations, one MINRES itera-
tion takes well under 1 second for most surfaces.

For both versions of our implementation, the MINRES solver is
executed on the host CPU, while matrix-vector products 𝑦 = 𝐴𝑥 are
computed on GPU(s). Since the vectors 𝑥,𝑦 contain very minimal
data (about 30 MB for our largest domain size), little time is spent
on data transfer in each iteration.

4.3 FFT-Accelerated Scattered Field Evaluation
After solving the BEM linear system using our GPU-accelerated
MINRES solver, we can use the surface current densities J,M to
compute the scattered field that propagates from the surface. For
the specific purpose of computing a surface BRDF value 𝑓𝑟 (𝜔𝑖 , 𝜔𝑜 ),
we need to evaluate the scattered field along 𝜔𝑜 in the far field
region (at points very far away from the surface itself). In the far
field region, the scattered field at r = 𝑟 r̂ (where 𝑘𝑟 ≫ 1) satisfies

E𝑠 (r) ≈ E(r̂) 𝑒
− 𝑗𝑘𝑟

𝑟
; H𝑠 (r) ≈ H(r̂) 𝑒

− 𝑗𝑘𝑟

𝑟
(36)

The exact forms of E(r̂) and H(r̂) can be derived from Eq. 6, and
some approximations are applied in the derivation given𝑘𝑟 ≫ 1 (see
Section 3 in the supplemental document). The Cartesian components
of these far field quantities, denoted as 𝐸𝑥 (r̂), 𝐸𝑦 (r̂), 𝐸𝑧 (r̂), 𝐻𝑥 (r̂),
𝐻𝑦 (r̂), and 𝐻𝑧 (r̂), can each be written as a linear combination of
the 6 following terms:

𝐹1 (r̂) =
∫
𝑉

𝐽𝑥 (r′)𝑒 𝑗𝑘r
′ ·r̂𝑑r′; 𝐹2 (r̂) =

∫
𝑉

𝐽𝑦 (r′)𝑒 𝑗𝑘r
′ ·r̂𝑑r′;

𝐹3 (r̂) =
∫
𝑉

𝐽𝑧 (r′)𝑒 𝑗𝑘r
′ ·r̂𝑑r′; 𝐹4 (r̂) =

∫
𝑉

𝑀𝑥 (r′)𝑒 𝑗𝑘r
′ ·r̂𝑑r′;

𝐹5 (r̂) =
∫
𝑉

𝑀𝑦 (r′)𝑒 𝑗𝑘r
′ ·r̂𝑑r′; 𝐹6 (r̂) =

∫
𝑉

𝑀𝑧 (r′)𝑒 𝑗𝑘r
′ ·r̂𝑑r′

(37)

where 𝑉 is defined and explained after Eq. 4. Recall that the cur-
rents J,M are represented using basis functions, and each Cartesian
component of these basis functions is approximated on the 3D grid
created for accelerating our linear solve (recall the Λ matrices). We
reuse this approximation to reduce each expression in Eq. 37 into

𝐹𝑖 (r̂) =
∑︁
p∈𝑆

ℎ𝑖 (p)𝑒 𝑗𝑘p·r̂ =
∑︁
p∈𝑆

ℎ𝑖 (p)𝑒 𝑗p·𝑘 r̂ 𝑖 = 1, 2, 3, 4, 5, 6 (38)

where 𝑆 is the set of all the grid points in the 3D grid and ℎ𝑖 stands
for the relevant component of 𝐽 or 𝑀 .

Eq. 38 reveals that 𝐹𝑖 (r̂) is the Fourier component of ℎ𝑖 (p) for
the spatial frequency −𝑘 r̂, so we can compute 𝐹𝑖 (r̂) for a dense grid
of directions by computing the FFT of the grid ℎ𝑖 (p). The required

spatial frequencies are not on the FFT grid but can be interpolated;
we add zero padding prior to the FFT step, to ensure enough reso-
lution in the frequency domain for the trilinear interpolation to be
sufficiently accurate.

5 HIGH RESOLUTION BRDF GENERATION
The goal of conducting our full-wave simulations is to characterize
the appearance of surfaces by computing BRDF values 𝑓𝑟 (𝜔𝑖 , 𝜔𝑜 )
for a number of incident and outgoing directions. The BRDF is a
smooth function of both 𝜔𝑖 and 𝜔𝑜 , and the sampling rate required
to resolve the high resolution details in the BRDF increases with the
size of the illuminated area on the surface. This appears to make the
cost of computing a full BRDF increase rapidly with the illuminated
area, since more incident directions need to be computed as the
simulated area grows, but in this section we propose an approach
to reduce this cost by taking advantage of linear superposition to
build the required results from a collection of smaller simulations.

In particular, we replace a single simulation using a large-area in-
cident field with simulations using a grid of 𝑁 2 small-waist Gaussian
beams to illuminate the same surface area. The large-area incident
field can be approximated by a linear combination of the small-waist
beams: even though the small-waist beams have a wider divergence,
they interfere to produce a narrow-divergence, large-area field. Lin-
earity implies that the far-field scattering pattern that would result
from the large-area incident field can also be approximated by a
linear combination of the results from the small-waist simulations.
Each small simulation costs much less than a large-area simula-
tion, and multiple small simulations can be done separately, even in
parallel, leading to substantial savings.

This is useful by itself because it allows larger areas to be covered
than what would fit in GPU memory, but the small beams can also be
combined with complex-valued scale factors to produce a total field
that is centered in any direction within the divergence of the small-
waist beams. We call this process beam steering and present a method
for computing BRDFs on dense grids of incident directions without
doing large simulations for every required incident direction.

5.1 Basic and Derived Incident Directions
We first consider 𝑁 2 Gaussian beams propagating in the direction
u and focused at a 2D grid of 𝑁 2 points on a receiving plane. Multi-
plying a complex-valued scale factor to the field produced by each
beam and summing up the fields will result in some total field. As
demonstrated in Fig. 8, different scale factors applied to the same
collection of Gaussian beams can result in total fields with different
net propagation directions.

Assuming the 𝑁 2 beams are focused at p𝑠𝑡 = (𝑥𝑠 , 𝑦𝑡 , 0) in space,
for 1 ≤ 𝑠, 𝑡 ≤ 𝑁 , where {𝑥𝑠 } and {𝑦𝑡 } are equally spaced sequences,
we find that given the basic direction u and a desired incident direc-
tion 𝜔𝑖 (pointing away from the surface), the complex scale factor
to multiply to the field from beam (𝑠, 𝑡) should be given as

𝑎𝑠𝑡 = 𝑒 𝑗𝑘p𝑠𝑡 ·𝜔𝑖 (39)
In other words, the factor 𝑎𝑠𝑡 comes from the field value of a

plane wave propagating in the direction of −𝜔𝑖 . In practice, the
Gaussian beams can only be effectively summed into a total field
that propagates in the desired direction if −𝜔𝑖 is close to u. When
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(a) (b)

(c) (d)

Fig. 8. Summing the fields from multiple Gaussian beams. (a) Wavefronts
from a single Gaussian beam. (b) Summing Gaussian beams propagating
in the same direction to obtain a wider field. (c) Summing multiple beams
to obtain a field with a slightly different net propagation direction. (d)
A failed attempt to construct a total field whose propagation direction
forms a large angle with the propagation direction of the individual beams;
destructive interference between neighboring Gaussian beams causes the
net propagation direction to become undefined.

Fig. 9. An example of a collection of basic incident directions, visualized
with hexagons that cover the unit circle which represents the projected
hemisphere. The center of each hexagon locates each chosen basic incident
direction. The region in the unit circle not covered by any hexagon represents
incident directions very close to grazing that we fail to model.

the angle between −𝜔𝑖 and u approaches the divergence of the small
beams, aliasing artifacts begin to appear. An example is shown in
Fig. 8 (d). We refer to the possible propagation directions −𝜔𝑖 as the
derived directions from the basic direction u.

In our framework, we decide on a primary waist 𝑤 and choose a
collection of basic incident directions. In general, a smaller primary
waist allows a larger range of incident directions to be derived from
each basic direction, so fewer basic incident directions are required.
On the other hand, a larger primary waist leads to low angular
divergence in each Gaussian beam and even lower divergence in
the synthesized total fields.

The hexagon grid covering the projected hemisphere in Fig. 9
is an example of dividing the hemisphere of all possible incident
directions into territories belonging to a finite collection of basic
directions. Interestingly, Eq. 25 and 26 implies that a basic incident

direction with a larger incident angle 𝜃𝑖 corresponds to a larger
range of derived directions, roughly by a factor of 1/cos𝜃𝑖 . This
factor neatly cancels with the cosine factor involved in representing
directions with the projected hemisphere, giving rise to the equal-
sized hexagons used for illustration. In practice, we confirmed that
basic incident directions closer to grazing “steer” to larger ranges of
derived directions, so the hexagon grid is a faithful representation
of the territories of each basic direction.

5.2 Individual Simulations and Synthesized Results
Given a chosen primary waist 𝑤 , we can compute the sequences
{𝑥𝑠 }, {𝑦𝑡 } which locate the Gaussian beams used in the small sim-
ulations. Specifically, the spacing Δ𝑥 = 𝑥𝑠+1 − 𝑥𝑠 ,Δ𝑦 = 𝑦𝑡+1 − 𝑦𝑡
are usually chosen as Δ𝑥 = Δ𝑦 = 𝑤 . We find this spacing ideal for
synthesizing total incident fields with low angular divergence and
near-constant intensity over a large area on the surface. In each
small simulation, the local origin of coordinates is at the center of
the single incident Gaussian beam. The Gaussian beams have field
values of identical amplitudes and phases at the local origins in all
the small simulations (i.e. identical fields are used). This way, when
synthesizing the total scattered field from the large-area surface,
the scale factors 𝑎𝑠𝑡 (Eq. 39) can be directly applied to the scattered
field quantities computed in each small simulation.

Since the collection of small simulations may be used to replace
multiple large-area simulations featuring different incident direc-
tions, different sets of complex-valued scale factors 𝑎𝑠𝑡 (Eq. 39) may
be used. In addition to the scale factors 𝑎𝑠𝑡 , another phase shift
associated with the outgoing direction needs to be applied. This is
because we need to convert from local coordinates to global coordi-
nates, as simulation (𝑠, 𝑡) is centered at p𝑠𝑡 = (𝑥𝑠 , 𝑦𝑡 , 0), rather than
the origin, in global coordinates. According to Eq. 37, the scattered
field values from simulation (𝑠, 𝑡) for the outgoing direction𝜔𝑜 need
to be multiplied by a factor of

𝑏𝑠𝑡 = 𝑒 𝑗𝑘p𝑠𝑡 ·𝜔𝑜 (40)
Combining with Eq. 39, the scattered fields in the far field region
corresponding to the pair of directions (𝜔𝑖 , 𝜔𝑜 ) are given by:

E(𝜔𝑖 , 𝜔𝑜 ) =
𝑛∑︁
𝑠=1

𝑛∑︁
𝑡=1

𝑒 𝑗𝑘p𝑠𝑡 · (𝜔𝑖+𝜔𝑜 )E𝑠𝑡 (𝜔𝑜 )

H(𝜔𝑖 , 𝜔𝑜 ) =
𝑛∑︁
𝑠=1

𝑛∑︁
𝑡=1

𝑒 𝑗𝑘p𝑠𝑡 · (𝜔𝑖+𝜔𝑜 )H𝑠𝑡 (𝜔𝑜 )
(41)

where E,H refer to the far field quantities only associated with
directions (without the 𝑒− 𝑗𝑘𝑟 /𝑟 term).

Lastly, we can compute the surface BRDF value as

𝑓𝑟 (𝜔𝑖 , 𝜔𝑜 ) =
1
2 |E(𝜔𝑖 , 𝜔𝑜 ) × H(𝜔𝑖 , 𝜔𝑜 )∗ |

Φ𝑖 cos𝜃𝑟
(42)

where the incident power Φ𝑖 is computed by integrating the incident
irradiance over the surface:

Φ𝑖 =
1
2

∫
𝑆

��[E𝑖 (r′) × H𝑖 (r′)∗] · n
��𝑑r′ (43)

where n is the surface normal at the macro scale (+z). Note that Eq.
42 and Eq. 43 can also be applied in single simulations, where Φ𝑖 is
computed from a single Gaussian beam.
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Given any collection of direction pairs (𝜔𝑖 , 𝜔𝑜 ), we can evaluate
the corresponding BRDF values by determining the set of relevant
basic incident directions that will derive all the queried directions
𝜔𝑖 and performing small simulations correspondingly. The BRDF
values for each direction pair can be computed using Eq. 41–43.

6 RESULTS
In this section, we present our simulation results and demonstrate
the validity and usefulness of our simulator in various ways. We
also compare our simulations to previous methods, and show a
comparison between our result and experimental measurement.

6.1 Demonstration of Consistency
To first demonstrate the validity of our simulation, we show that
our results are consistent as we compute BRDFs for the same sur-
face represented by height fields of increasing resolution. We use
two surfaces for consistency testing—one features a 1D diffraction
grating and the other contains a collection of corner reflectors, as
shown in Fig. 10. Both surfaces are 16𝜇𝑚×16𝜇𝑚 and are represented
with 2D height fields of a few different resolutions. The surface ma-
terial is defined by the wavelength-dependent refractive index of
aluminum, giving rise to a near-constant overall reflectance around
0.9. For both surfaces, simulations were performed for normal inci-
dence and repeated for 25 wavelengths between 0.4𝜇𝑚 and 0.7𝜇𝑚.
The incident Gaussian beam waist was chosen as 𝑤 = 3.2𝜇𝑚, and
for each surface and wavelength, we perform a pair of simulations
using Gaussian beams with two orthogonal linear polarizations and
later average the BRDF values derived from the paired simulations.

Surface BRDFs are shown in Fig. 10, where each hemisphere
plot visualizes a surface’s BRDF values corresponding to a fixed
incident direction—normal incidence in this case—and a collection
of outgoing directions that cover the upper hemisphere. Both single-
wavelength (𝜆 = 0.4𝜇𝑚) and multiple-wavelength BRDF plots from
different simulation resolutions are shown for comparison, and
the color BRDFs are computed using the standard spectral data →
XYZ → RGB conversion. The predicted BRDFs from the 80 × 80
simulations significantly deviate from higher resolution simulations.
The 160×160 simulations also reveal some noticeable differences, but
the results from the 320×320, 640×640 and 960×960 simulations are
visually identical. For our shortest wavelength of 0.4𝜇𝑚, our chosen
resolutions correspond to 2, 4, 8, 16, and 24 samples per wavelength
in the height field’s domain. These results show that our simulation
is consistent under refinement. Moreover, they suggest that using a
resolution of around 8 samples per wavelength in the height field
domain is sufficient to achieve accurate results for these examples,
even though the effective sampling rate along the surface is lower
in steeply sloped areas.

6.2 Comparison with Existing Wave Based Models
We now compare our results with those from other wave optics
methods that can compute spatially varying BRDFs with high resolu-
tion details. A recent work by Yan et. al. [2018] provides these kinds
of BRDF models, which can be directly applied to rough surfaces
represented as 2D height fields. We use three of their models for com-
paring with our simulations—the reciprocal original Harvey-Shack

(OHS) model, the reciprocal generalized Harvey-Shack (GHS) model,
and the Kirchhoff-based model. The BRDFs based on OHS and GHS
were derived by approximating the rough surface as a plane that
reflects light with a spatially-varying phase shift. The spatially vary-
ing phase shifts depend on the surface heights and are approximated
using the original Harvey-Shack diffraction theory and the general-
ized Harvey-Shack theory, which is more accurate for large incident
and outgoing angles [Krywonos 2006]. The Kirchhoff-based BRDF
is derived from the Kirchhoff diffraction integral, which removes
the use of a planar proxy when approximating phase shifts and
integrating over the surface.

Another first-order reflection model, based on vector rather than
scalar fields, is introduced in [Xia et al. 2023]. Like our method, this
model introduces fictitious surface currents and computes scattered
fields using the source-field relationships. However, it assumes that
at each point on the surface, the incident field reflects from the
plane tangent to the surface at this point, so that the reflected field
values can be computed from closed-form formulas that describe
flat surface reflection [Bohren and Huffman 2008]. We refer to this
method as the tangent plane method in the rest of the text.

To compare our simulations with other methods, we performed
simulations on 6 different 24𝜇𝑚 × 24𝜇𝑚 surface samples, each dis-
cretized into 960 × 960 basis elements. Simulations were done using
five incident directions—the normal direction, and four other di-
rections given by (𝜃𝑖 , 𝜙𝑖 ) = (18°, 0°), (36°, 90°), (54°, 180°), (72°, 270°).
The Gaussian beam waists were computed using Eq. 26 with a pri-
mary waist of 𝑤 = 5.5𝜇𝑚. As with the consistency tests, the surface
material is aluminum, and for each incident direction, simulations
were performed with 25 wavelengths and 2 linear polarizations.
Thus, we perform 5 × 25 × 2 = 250 simulations for each surface.

The tangent plane method was also applied a total of 250 times
for each surface, while the methods from [Yan et al. 2018] were
each applied 125 times for each surface, since these methods do
not distinguish between polarizations. The Gaussian beam incident
fields map naturally to the Gaussian coherence kernel used in these
methods, allowing us to match the illumination conditions across
all methods. In this paper, we feature a subset of surface samples
and present BRDF plots for some selected incident directions. Our
supplemental document contains a larger collection of results.

Unstructured Surfaces. We performed simulations on isotropic
surfaces generated from random processes and brushed surfaces
synthesized through resampling the height data provided in [Yan
et al. 2018]. The first row of Fig. 1 characterizes a smooth surface
with isotropic bumps, and the incident direction is given by 𝜃𝑖 =

36°, 𝜙𝑖 = 90°. Note that in Fig. 1, 11 and 12, the BRDF values computed
using the five different methods match in magnitude. For this very
smooth surface, the scattered energy is constrained in a relatively
small cone of directions, and the methods show excellent agreement,
with only the OHS-based method slightly deviating from the others.

The top rows of Fig. 11 show a brushed metal surface with mod-
erate roughness, and BRDF plots are provided for normal incidence
and an incident direction with 𝜃𝑖 = 18°, 𝜙𝑖 = 0°. The BRDF plots
are very similar across the methods, except that the OHS model
overestimates BRDF values for outgoing directions close to grazing.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



A Full-Wave Reference Simulator for Computing Surface Reflectance • 1:11

80 × 80 160 × 160 320 × 320 640 × 640 960 × 960

Fig. 10. Single-wavelength (𝜆 = 0.4𝜇𝑚) and multiple-wavelength BRDF plots for two surfaces samples, obtained from simulations of different resolutions.
Normal incidence is used in all simulations. The predicted BRDFs from the 80 × 80 simulations significantly deviate from those from higher-resolution
simulations. The 160 × 160 simulations produce reasonable results, while results from the 320 × 320, 640 × 640 and 960 × 960 simulations are visually identical.

The bottom rows of Fig. 11 show a very rough, isotropic surface,
with BRDF plots provided for normal incidence and an oblique
direction with 𝜃𝑖 = 36°, 𝜙𝑖 = 90°. The surface scatters energy into
the entire upper hemisphere. With normal incidence, the BRDF
plots appear similar for the last three methods, while the larger
incident angle gives rise to a slightly different plot for almost every
method. The Kirchhoff and tangent plane method mostly match
our simulation well, but compared with our simulation, they both
overestimate the BRDF values for 𝜃𝑜 close to 90°. We believe this
is because methods that only model first-order reflection fail to
account for shadowing and masking.

Structured Surfaces. We also include some structured surfaces
that demonstrate more differences between our simulations and
other methods. The first example—a scaled version of the corner
cube sample used for consistency testing—is covered with small
corner reflectors, each consisting of three mutually perpendicular
and intersecting flat surfaces. As incident light hits the sample, it
generally gets reflected three times by interacting with some corner

reflector, and propagates back along the incident direction. This
retro-reflecting behavior can only be modeled by our simulation.

The BRDF plots are in the first two rows of Fig. 12, featuring
normal incidence and another incident direction given by 𝜃𝑖 =

54°, 𝜙𝑖 = 180°. For normal incidence, our simulation predicts energy
reflected back along the normal direction, while the other four
methods predict “empty” BRDF plots. In fact, only modeling the
first-order reflection from this surface results in scattered light that
propagates in directions that belong in the lower hemisphere.

To prevent the surface from functioning as a diffraction grating,
we gave each corner cube a different size and orientation, and some
corner cubes partly overlapped with others. As a result, especially
with non-normal incidence, the incoming light sometimes interacts
with only one or two faces of a corner cube. For the 54° incident
angle, the common component in the BRDF plots from the last three
methods suggests that some corner cubes only induce first-order
reflection of the incident light, which is predicted by our simulation
and some approximate methods. Features in the BRDF plots unique
to the approximate methods result from their incorrect prediction
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Reciprocal OHS Reciprocal GHS Kirchhoff Tangent Plane Our Simulation

Brushed surface

Isotropic surface

Fig. 11. Wavelength-dependent BRDFs for a moderately rough brushed metal surface and a very rough isotropic, bumpy surface. The circle and dot icons in
the leftmost column represent the incident directions corresponding to each row of results. The first and third rows demonstrate normal incidence on the
surfaces, while the second and fourth rows feature 18° and 36° incident angles, respectively.

of first-order reflection from corner cubes that in fact induce higher-
order reflection. On the other hand, features unique in the BRDF plot
computed from our simulation represent higher-order reflection,
and the peak in BRDF values around the incident direction indicates
retro-reflection from the surface.

The lower half of Fig. 12 describes a surface covered with spher-
ical pits, which, due to the high slopes at their edges, also induce
multiple reflection. BRDF plots are shown for normal incidence and
a direction with a 72° incident angle. The BRDF patterns are overall
similar for the methods, with similarly arranged color bands pre-
dicted from the last four methods. Compared to other methods, our
simulation predicts brighter color bands, which we believe result
from the interference between reflection of different orders.

Table 2 provides a summary of our simulations on the surfaces
and incident directions featured in Fig. 11 and Fig. 12. In the table,
the third dimension in the “size” column refers to the range of total
height variation in the surface sample. The number of iterations
in MINRES solving (using a certain tolerance in the solver code)
and the total simulation time are similar across wavelengths and

Table 2. A summary of simulations on selected surfaces, reporting average
number of MINRES iterations and average simulation time for each surface
and presented incident directions.

surface size (µm) (𝜃𝑖 , 𝜙𝑖 ) iter time
brushed 24 × 24 × 2.6 normal 540 4.9 min

(18°, 0°) 548 4.9 min
isotropic 24 × 24 × 2.7 normal 607 5.3 min

(36°, 90°) 638 5.5 min
corner 24 × 24 × 3.9 normal 1468 14.4 min

(54°, 180°) 1782 17.3 min
spherical 24 × 24 × 1.7 normal 644 5.0 min

(72°, 270°) 816 6.0 min

polarizations, but vary significantly among the surfaces and incident
directions. Thus, we provide estimates of these data by averaging
across wavelengths and polarizations.
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Reciprocal OHS Reciprocal GHS Kirchhoff Tangent Plane Our Simulation

Corner cubes

Spherical pits

Fig. 12. Wavelength-dependent BRDFs for two surfaces, covered with corner reflectors and spherical pits. The circle and dot icons represent the incident
directions for each row of results. The first and third rows demonstrate normal incidence, while the second and fourth rows feature 54° and 72° incident angles.

6.3 Coherence Area and BRDFs
We further show some examples where the same surfaces are illu-
minated by incident fields with different coherence areas. We are
interested in comparing the BRDFs resulting from illumination of
different levels of coherence, such as from light sources of different
sizes. Two 30𝜇𝑚 × 30𝜇𝑚 surface samples are used—one contains
isotropic bumps while the other simulates a brushed metal surface.
Instead of illuminating each surface with one Gaussian beam, we
use an idea related to the beam steering approach of Section 5 and
consider 8 × 8 = 64 small simulation domains which partly overlap,
each with a size of 12.5𝜇𝑚 × 12.5𝜇𝑚 (the “shift” between adjacent
domains is 2.5𝜇𝑚). In these examples we only demonstrate normal
incidence, and in each small domain, we use a Gaussian beam with
waist 𝑤 = 2.5𝜇𝑚. The 64 simulations are performed separately,
and to simulate illumination with different coherence areas, the
scattered field values are combined in four ways:

• 1 × 1 groups: The Gaussian beams used in the small simu-
lations are considered mutually incoherent, and the surface
BRDF is the averaged BRDF of the 64 simulation areas.

• 2 × 2 groups: The Gaussian beams are divided into 16 coher-
ence groups, each containing 2 × 2 Gaussian beams. BRDFs
are computed for each group by summing the scattered fields
with the proper phase shifts (Eq. 40). The surface BRDF is the
average of the 16 subregion BRDFs.

• 4 × 4 groups: The Gaussian beams are divided into 4 groups,
each containing a 4 × 4 grid of Gaussian beams.

• 8×8 group: All the 64 Gaussian beams are considered mutually
coherent.

Fig. 13 shows that for both surfaces, the BRDFs contain more high
resolution details when the illumination is more coherent, and the
BRDFs corresponding to less coherent illumination appear blurry.
Two factors contributing to this difference are the band limit on the
far-field scattering pattern that is imposed by the small coherence
area and the averaging of intensity patterns over several subregions.
For more complete comparison, we also include examples of subre-
gion BRDFs computed from a single 2.5𝜇𝑚 beam. The supplemental
document shows all 64 single-beam BRDFs for each surface.
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The diameter of coherence area (𝐷𝑐 ) is estimated for each illu-
mination scheme and reported in Fig. 13. We consider an infinitely
large surface normally illuminated by infinitely many Gaussian
beams with the same waists and spacing as in our simulations. We
then consider a sequence of distances {𝐷𝑖 }, and for each distance
𝐷𝑖′ , we randomly sample many pairs of points x1, x2 on the surface,
such that |x1 − x2 | = 𝐷𝑖′ . For each pair of points, we evaluate the
coherence function 𝛾 (x1, x2) [Roelandt et al. 2013]

𝛾 (x1, x2) =
⟨𝐸 (x1)𝐸∗ (x2)⟩√

𝐼1𝐼2
(44)

where 𝐼1, 𝐼2 denote the field intensities at x1, x2 and ⟨·⟩ refers to
averaging over time. Averaging the value of 𝛾 (x1, x2) for collections
of samples that satisfy |x1 − x2 | = 𝐷𝑖′ gives us an estimate of the
coherence at distance 𝐷𝑖′ . Repeating the same process for different
distances gives rise to the relationship between spatial coherence
and distance for an illumination scheme. The popular definition of
coherence diameter—the distance over which the value of |𝛾 | has
dropped to 1/𝑒2—is then used to estimate 𝐷𝑐 [Roelandt et al. 2013].
Note that since the illumination areas of neighboring Gaussian
beams partly overlap, 𝐷𝑐 does not scale linearly with the size of the
coherence groups (i.e. 1, 2, 4, 8).

6.4 Some Beam Steering Examples
Here we demonstrate our beam steering technique for fast BRDF
computation and its application both to our simulations and to the
first-order tangent plane method. We consider a 32.5𝜇𝑚 × 32.5𝜇𝑚
surface and 9×9 = 81 small simulation domains which partly overlap,
each with a size of 12.5𝜇𝑚×12.5𝜇𝑚. As shown in Fig. 14, the surface
reflects specularly along one direction and is retro-reflecting along
the other, thanks to the right angles between some neighboring
planar components of the surface. We computed the surface BRDF
values for a collection of smoothly varying incident angles, and as
illustrated in Fig. 14, the plane of incidence is perpendicular to the
direction along which the surface is smooth.

Since the surface reflects specularly along one direction, the BRDF
plot for each incident direction reduces to a thin slice, so in Fig. 15,
we visualize the BRDFs for incident angles between −30° and 30° in a
compact way. The BRDFs on the left were computed by synthesizing
small simulations performed with 13 basic incident directions (while
the range of considered incident angles is 60°), and the BRDFs on the
right were computed by using the tangent plane method in place of
our simulation in the same framework.

The comparison in Fig. 15 reveals that the tangent plane method
fails to model 2nd-order reflection from the surface. Still, as some of
our results imply, the tangent method can be an accurate alternative
to our simulation for computing the BRDFs of smoother surfaces.
Since the tangent plane method is less expensive, we used it with
our BRDF generation framework to compute BRDFs for two other
surfaces, which we present in our supplemental video. Specifically,
in the video we demonstrate smoothly varying BRDFs as the incident
direction is steered smoothly in the upper hemisphere. Notably,
the tangent plane method was invoked on the small domains for
less than 500 basic incident directions, while the BRDF plots were
synthesized for 1800 incident directions.

6.5 Comparison with Measurements
We tested the simulator’s ability to predict measurements of a real
surface exhibiting strong multiple reflection effects. For an example
of a surface where both the BRDF and surface geometry are known,
we look to the work of Sturniolo et al. [2022], who fabricated grooved
surfaces as shown in 16 (a), where the cross section of each individual
half-cylinder is shown in 16 (b). We compare our simulation results
with the informal BRDF measurement for this sample included
in their paper. Since this surface has constant cross section along
one direction, we modeled it with a 2D version of our simulator.
Light reflection from the interface between 𝑅1 and 𝑅2 in 16 (b) was
computed by our simulator, while the transmission of incident and
outgoing light through the flat interface between 𝑅0 and 𝑅1 was
computed based on Fresnel’s laws. We also used the tangent plane
method to model reflection from the same structure.

The sample exhibits structural colors under normal incidence,
as indicated from the blue, red, and green color bands in Sturniolo
et. al.’s measurement, shown in Fig. 17. The tangent plane method
did not predict much reflection at all, since the colors cannot be
explained by first-order reflections. Our simulation predicts a re-
flection pattern that shows green around the normal direction and
transitions into purple, red, and eventually a dim glimpse of green.
In the measurement, the color around the normal direction is cov-
ered by the reflection of the light source, and the rest of the color
progression is overall similar in terms of hue.

There are significant differences in the exact colors, and the mis-
match could be caused by a combination of discrepancies between
our idealized geometric model and the real structure of the fabri-
cated sample, differences in color processing between our system
and the unknown imaging pipeline of the consumer RGB camera
used in the measurement, and unmodeled aspects of the illumi-
nation beam in the experiment. There are also some differences
between the outgoing angles at which the colors transition, which
could again be related to discrepancies in the exact surface geometry.
Despite these differences, this comparison shows that the overall
appearance of this sample can be predicted far more reasonably by
BEM than by previous physical optics based scattering models.

7 DISCUSSION
In this section, we discuss the ranges of validity for different reflec-
tion models based on our results from the previous section. We also
discuss the advantages and limitations of our simulation and BRDF
generation framework.

7.1 Evaluation of Reflection Models
The results in the previous section demonstrate different levels of
agreement among the five compared methods. For the very smooth
surfaces, as expected, there is excellent agreement between our sim-
ulation and all four of the first-order methods. For rougher isotropic
and brushed surfaces, the BRDFs computed from the methods are
still largely similar, especially for normal incidence. The weakness
of the OHS model for modeling large-angle incidence and scattering
is revealed in many of our results, while other first-order methods,
especially the Kirchhoff based model and the tangent plane model,
seem to remain accurate even on fairly rough surfaces.
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𝐷𝑐 ≈ 5.00𝜇𝑚 𝐷𝑐 ≈ 6.35𝜇𝑚 𝐷𝑐 ≈ 10.36𝜇𝑚 𝐷𝑐 ≈ 18.92𝜇𝑚 Subregion

Fig. 13. Multi-wavelength BRDFs of an isotropic surface and a brushed surface under illumination with different coherence diameters 𝐷𝑐 (e.g. due to light
sources of different sizes or solid angles). These BRDFs are computed through performing multiple simulations on different subregions of the surfaces and
summing the results coherently or incoherently. For each surface, we also included an example of a single subregion BRDF—see Section 6.3 for explanations.

x

y

z

Fig. 14. A surface that reflects specularly along one direction and is retro-
reflecting along the other. BRDF values are evaluated and shown for this
surface, and the featured incident angles all lie in the plane of incidence
that is perpendicular to the direction along which the surface is smooth.

These suggest that cheaper first-order wave-based reflection
models are usually sufficient for characterizing common types of
rough surfaces characterized by isotropic or brushed patterns. These
wave models, instead of expensive simulations, can potentially be
combined with our BRDF generation framework to compute high-
resolution BRDFs for large surface samples. Moreover, the observa-
tion that first-order reflection models tend to be most inaccurate at
large outgoing angles suggests that these methods may be improved
if they are combined with some ad hoc modeling of shadowing and
masking (e.g. [Dong et al. 2016]).

Our last few examples show that the rendering of many partic-
ular types of surfaces requires more sophisticated wave models.
Our simulations of multiple reflection from these example surfaces
demonstrate how the simulation can be used to study surfaces with
unusual optical properties, including artificial “metasurfaces” and
complex natural surfaces. Our simulator can be used to design or

−30°
−27°
−24°
−21°
−18°
−15°
−12°
−9°
−6°
−3°
0°
3°
6°
9°
12°
15°
18°
21°
24°
27°
30°

Our Simulation Tangent Plane

Fig. 15. BRDF slices from the surface shown in Fig. 14. The plane of incidence
is perpendicular to the direction along which the surface is smooth, and
the incident angle ranges from −30° to 30°. The differences between the left
and right figures represent the 2nd-order reflection that the tangent plane
method fails to capture. In the left figure, the movement of the 2nd-order
reflection pattern with the incident angle indicates retro-reflection.

study such surfaces, and even though our simulator cannot be di-
rectly applied to rendering due to its high cost, it can contribute
to rendering through motivating and guiding the design of new
efficient appearance models.

7.2 Limitations
There are a few aspects of our simulations that we hope to improve,
and some considerations may lead to interesting future work.

Upper Bound on Surface Slopes. Our basis elements in each
simulation are based upon the regular 2D grid associated with the
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𝑅 = 33𝜇𝑚

𝛼 = 82. 5∘

𝑅" 𝜂" = 1.00

𝜂# = 1.58

𝜂$ = 1.41

𝑅#

𝑅$

(a)

(b)

Fig. 16. Illustration of samples fabricated by Sturniolo et. al. (a) The grooved
surface contains many copies of the same structure; this figure is adopted
from [Sturniolo et al. 2022]. (b) The cross section of each individual cylindri-
cal structure; the structure consists of two types of dielectric materials.

−30° −15° 0° 15° 30°

−30° −15° 0° 15° 30°

−30° −15° 0° 15° 30°

Fig. 17. Reflected colors from the cylinder-shaped sample under normal
incidence, as measured in experiments (top), predicted by our simulation
(middle), and predicted by the tangent plane method (bottom).

surface height field. Thus, on regions of the surface that contain
high slopes, the effective size of each basis element can be a lot
larger than its xy footprint size. Thus, a given xy footprint size 𝑑 for
the basis elements puts an upper bound on the surface slopes. For
instance, with a choice of 𝑑 ≈ 𝜆/16 for the minimum wavelength
(0.4𝜇𝑚), our simulated surfaces, in theory, should not contain re-
gions with slopes higher than 60°. Still, the consistency tests in Fig.
10 suggest that simulation resolutions lower than what we use (e.g.
𝑑 ≈ 𝜆/8) can lead to results indistinguishable from those produced
in high resolution simulations, even for surfaces with high slopes.
This means that in practice, many surfaces containing slopes much
higher than our theoretical upper bound may be well characterized
by simulations using our usual resolution. Conversely, surfaces con-
taining low slopes might be well simulated using lower resolutions,
as long as all the sharp features in the surface samples are resolved.

Single-Layered Modeling. Despite its ability to model surfaces
represented by largely arbitrary height fields, our simulator is cur-
rently limited to structures that only contain single-layered inter-
faces. The BEM surface simulations can be easily generalized to
multi-layer interface structures, although introducing basis elements
on multiple surfaces and constructing larger linear systems make
the simulations increasingly expensive and thus limited to smaller
domain size. Some multi-layered structures may be reasonably char-
acterized by modeling the behavior of each interface individually,
yet we believe that more sophisticated and efficient methods are
needed for modeling multi-layered structures.

Grazing Incident Angles. BRDFs are most difficult to measure
and model for grazing incident directions. According to Eq. 26, the
incident Gaussian beams for large incident angles in our simulations
have small waists, and eventually are not very good models of
collimated light. This puts an upper bound on the incident angles
we can model, depending on the primary beam waist𝑤 . For instance,
the primary waist we used in beam steering is 2.5𝜇𝑚, which gives
rise to a waist less than 1𝜇𝑚 for incident angles larger than 70°
and results in large divergence, according to Eq. 25. This limits the
maximum incident angle in our basic incident directions to around
72°; beam steering further allows us to simulate incident angles up to
around 80°, though these very large incident angles can occasionally
lead to visible artifacts in results.

Applicability of Beam Steering. The steering-based BRDF gener-
ation framework we presented works well on most types of rough
surfaces, but there are cases where the individual domains cannot be
made much smaller. For instance, if multiple reflections involve far-
apart regions on the surface, then these two regions on the surface
must both be included in a single simulation domain.

8 CONCLUSION AND FUTURE WORK
We have presented a 3D full-wave simulator for explicitly modeled
rough surfaces, together with a framework for efficiently computing
BRDF values for many incident and outgoing directions. The simu-
lation is very useful for exploring the scattering behavior of unusual
surface geometries and for evaluating the accuracy of approximate
models that can be used in rendering.

Our results confirm the applicability of many existing first-order
reflection models for low roughness, unstructured surfaces, but they
indicate a strong need for wave optics based models that accurately
compute high-order reflection, in order to extend our ability to ren-
der more structured surfaces. We hope to develop computationally
inexpensive but accurate BRDF models, test their validity against
our reference simulations on small problems, and generalize these
appearance models to large-area surfaces involved in rendering or
designing complicated materials. We believe that this work is an
important step to accurate appearance modeling using wave optics,
and look forward to its future applications.
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