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In this paper, we study wave effects from rough fibers with arbitrary 3D microgeometry.

We developed a 3D wave optics simulator based on a physical optics approximation (PO),

using a GPU-based hierarchical algorithm to significantly accelerate the calculation. To

practically handle geometry variations in the scene, we propose a model based on wavelet

noise, capturing the important statistical features in the simulation results that are relevant

for rendering. We show in the main paper that our compact noise model can be easily

combined with existing scattering models to render hair and fur of various colors, introducing

visually important colorful glints that were missing from all previous models.

In this supplemental material, we will include more implementation details regarding our

simulator, additional validation results on the simulator, and additional validations of the

noise-based representation.

Code, data, and the update-to-date version of this document can be downloaded from

the project page: https://mandyxmq.github.io/research/wavefiber 3d.html.
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1 Wave simulation in 3D

In this section, we will present more details about our octree-based physical optics (PO)

simulator, as well as provide additional validations of our simulator.

1.1 Wave Optics

In wave optics simulation, we compute electric and magnetic fields and analyze how the scat-

tering object affects them. Fields with sinusoidal time variation are called time-harmonic

fields, and their mathematical analysis can be simplified by using complex quantities. Pha-

sors of the electric field E and the magnetic field H are defined as:

Einst = Re(Eejωt), Hinst = Re(Hejωt). (1)

Einst and Hinst are the instantaneous electric and magnetic fields, and ω is the angular fre-

quency. In what follows, we assume time-harmonic fields and suppress the time dependence

ejωt unless specified. The wave fields obey the time-harmonic Maxwell’s equations, which

relate corresponding currents and fields:

∇× E = −M− jωµH

∇×H = J+ jωϵE.
(2)

ϵ and µ are the permittivity and permeability. Here J and M are time-harmonic electric

and magnetic current densities. In our problems, they are fictitious currents that make the

problem easier to solve mathematically.

The object is illuminated by an incident wave, and the incident electric and magnetic

fields are denoted as Ei and Hi. The presence of the scatterer alters the fields, and we call

the resulting fields the total fields. We denote the total fields outside the object as E1 and

H1. We can further write E1 and H1 as the sums of incident fields and the scattered fields

Es and Hs.

E1 = Ei + Es, H1 = Hi +Hs. (3)

The scattered fields propagate outward from the scatterer, and we can compute the energy

flow from them. The scattered fields will be the key to computing scattering functions.
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1.2 Octree-based physical optics

We propose using a physical optics approximation (PO) to efficiently compute electromag-

netic wave scattering. PO assumes single scattering, so that the surface currents can be

locally computed based on the incident fields and the material properties. PO also assumes

that the local geometry is flat enough to be approximated locally as a plane. Thus, we can

relate the reflected field and the incident field via surface reflection coefficients in the flat

surface reflection computation. Although PO ignores multiple scattering within a single fiber

geometry, it allows us to efficiently analyze surface reflection and diffraction from fibers. Our

PO simulator is general and works for arbitrary 3D objects. PO makes the surface current

computation so efficient that computing the far-field radiation becomes the new bottleneck

of our problem. We accelerate the brute force far-field calculation using an octree-based

algorithm. We borrowed the idea from the multilevel fast multipole algorithm (MLFMA)

[CMSJ01], which is originally used to accelerate the first step in the full wave simulation

that computes the surface currents. The algorithm works by first constructing an octree that

includes all the sampled points on the surface of the scatterer. Then, it computes the surface

currents associated with the surface points in the same way as it does in the non-tree-based

PO algorithm. Next, from the bottom (leaf) level of the tree to the top level, we accumulate

the far-field contribution along the way, computing all the scattering directions at once. This

accelerated algorithm is general and can be applied to accelerate the far-field calculation in

exact wave simulations as well.

We implemented the PO algorithm on the GPU by writing CUDA kernels and utilizing

the Thrust library. Thrust provides data-parallel primitives such as scan and reduce, and it

is also easy to customize operations on arrays using Thrust.

1.2.1 Prior to the far-field compuatation

The first step is to acquire a densely sampled point surface for the scatterer we are interested

in. Given a mesh surface, we compute the center r′, normal n(r′), and area a for each mesh

element.
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Figure 1: This figure illustrates the surface points and the normals attached to them on a
spherical mesh.

The second step is to construct an octree on the GPU using the surface point data.

Before constructing the tree, we define the bounding box of the object, which defines the

dimensions of the grid on the top level. We also define the maximal depth D of the tree,

and the tree will have D + 1 levels of grids. Following the quadtree example provided by

the CUDA SDK, we make use of CUDA’s dynamic parallelism, which enables a kernel to

create and synchronize new nested work. For each dimension of the surface point and the

normal, as well as the area, we create two buffers that are used in the octree construction

algorithm to properly sort the original data. The data that belongs to the same grid of the

tree is always in consecutive chunks in the sorted array, following the same ordering of the

grid. The CPU first launches a block of threads, and this block will perform the following

tasks:

• If the maximum depth of the tree is exceeded, the threads in the block will exit. Before

exiting, we ensure that the sorted points are stored in the first buffer and perform a

swap when necessary.

• If the tree needs to be further subdivided, we count the number of points in each

child (octant). The points contained in the current node are divided into sections

and handed to warps of threads, where they use the ballot and popc intrinsics to

count the points for each quadrant based on their position relative to the center of the

bounding box of the current grid.

• To know the numbers for the block, we run a scan/reduce at the block level.

• The block move points accordingly based on the counted result.
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• The block launches eight new blocks, one block per child. Each block will use the same

algorithm described here.

Figure 2: This figure illustrates an octree structure storing the surface points for the sphere.

After constructing the tree and sorting the data, the third step is to compute the surface

currents. At each sampled point r′, we consider a local tangent plane that is perpendicular

to n(r′) attached to that point. Then, we compute the surface currents J(r′) and M(r′)

using the analytic solution for reflection from a flat surface. Specifically, we first build a

local polarization frame using the incoming wave direction ei and the normal n(r′), and

decompose the incident fields into the sum of parallel and perpendicular polarized fields

Ei = Ep
i +Es

i . Then the reflected field and the total field at the boundary can be computed

via

Er = Ep
r + Es

r = F pEp
i + F sEs

i ,

E1 = Ei + Er.
(4)

In the above equations, F p and F s are the reflection coefficients in Fresnel’s equations for

parallel and perpendicular polarization. The reflected field Er here is an approximation of

the actual scattered field at the surface based on the assumption that the current depends

only on the incident field but not on scattering from other parts of the object. Similarly, we

can compute the scattered and total magnetic fields. By applying the known relationship

between the currents and the total fields, we can compute the surface currents.

M = −n× E1, J = n×H1. (5)

Each surface point is associated with six values Jx, Jy, Jz, Mx, My, and Mz. This step is

computed on the GPU.
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Figure 3: This figure illustrates computing the surface currents using a local tangent plane.

Before performing the actual far-field computation, there are a few precomputation steps

we conduct to assist the calculation using the tree structure. Since the octree we construct is

complete, we always have (8D+1− 1)/7 nodes. However, as we only care about points on the

surface of an object, most of the nodes in the tree are empty. Therefore, after constructing the

tree, we compute a list of active nodes that contain at least one surface point in preparation

for efficient traversal and far-field calculation. Specifically, we compute two arrays: one for

storing all the indices of active nodes, and another for storing the number of active nodes

for each level of the tree.

Then we follow [SC01] and determine the number of directions for each level of the tree.

Specifically, we use the formula

M = kd+ 6(kd)1/3, (6)

where M is the number of directions, k is the wave number, and d is the size of the corre-

sponding dimension. For fiber scattering problems, we determine Mθ and Mϕ for the θ and ϕ

angles, and d is the enlarged length and diameter, respectively. We set an enlargement ratio,

and in practice, a ratio of 1.2 works well for the fiber problems we tested. Next, we create

plans for the Fast Fourier Transform (FFT) calculation based on the number of directions

for each level. More information can be found in the cuFFT documentation. This is for

interpolating the fields as we go up the tree.

The last precomputation step is to compute the translation from the center of the child

node to the center of the current node. The translation kernel is ejk0(cchild−c)·r̂, where cchild−c

is the vector from child to self, and r̂ is each direction in the current direction set. Since

the grids on the same level are of the same size, only eight complex numbers need to be

computed and stored for each level.

Regarding what we have discussed so far, the construction of the tree, as well as the
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active node precomputation is only needed per geometry. In other words, we do not need

to repeat these calculations as we change incident directions or wavelengths or the material

property of the object. The FFT plans only depend on the number of directions we want

to compute. The surface currents depend on the incident direction, wavelength, as well as

material property, and need to be recomputed whenever these parameters change. The value

of the translation kernel (from the child to the grid itself) only needs to be recomputed when

the wavelength changes. One trick to accelerate the PO calculation is that we can discard

the surface points that we are sure of in geometric shadow, as they will have zero surface

currents and will not contribute to the scattered fields. In that case, constructing the tree

and processing it to obtain a list of active nodes are incident-direction dependent.

1.2.2 Far-field scattering based on the octree structure

After computing the surface currents, we effectively transform the original scattering prob-

lem into a radiation problem using Huygens’s principle: The surface currents serve as the

equivalent sources to the original scattering problem and radiate the same scattered fields

that we aim to compute. We can mathematically write down the radiation from the surface

currents J and M. In the far field, the scattered electric field at point r is [Gib21]:

Es(r) = jωµ0
e−jk0R

4πR
r̂×

∫
S

[
r̂× J(r′) +

1

Z0

M(r′)

]
ejk0r

′·r̂dr′, (7)

where k0 is wave number, r̂ is the scattering direction, R = |r|, S is the surface of the

scatterer and r′ is a point on the surface and Z0 =
√

µ0

ϵ0
is free space impedance. Hs can be

easily computed once we know Es, since waves propagate radially and locally follow a planar

wavefront in the far field [Jac21]. We define Efar
s (r̂) and Hfar

s (r̂) by

Es(r) =
e−jk0R

R
Efar

s (r̂), Hs(r) =
e−jk0R

R
Hfar

s (r̂), (8)

where Efar
s and Hfar

s (r̂) only depend on the scattering direction r̂ but not R.

To compute the far-field scattering using the tree, we first multiply the surface currents

with the corresponding surface area a at the same point to numerically integrate the far-field

contribution. We then loop through the tree levels on the CPU, from the bottom (leaf) level

to the top level, and compute far-field scattering on the GPU.

At the leaf level (Figure 4 a), we have the coarsest set of directions. For each direction

and each surface point r′, we compute ejk0(r
′−c)·r̂, where c is the center of the grid containing

the surface points. We multiply the above value with the surface currents and denote the

resultant arrays corresponding to each dimension of the electric and magnetic currents as
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Ax, Ay, Az, Fx, Fy, and Fz. This step is performed on the GPU. Then, we use the reduce

operation in Thrust and sum the far-field contributions for each leaf node.

From the second lowest level to the top level (Figure 4 b), we have the same set of oper-

ations: we loop through the active nodes on the current level using the non-empty node list

we precomputed. For each active node, we loop through its active children nodes. Looping

through active children is straightforward because we constructed a complete tree in the

first place. Given a current node with index m on level q, the index of the ith child is

Nend + 8(m − Nstart) + i, where q takes values from 0 to D, and i takes values from 0 to

7. Nstart = (8q − 1)/7 and Nend = (8q+1 − 1)/7 are the start index and the end index of

this level, respectively. We check for each of the 8 children, whether it is in the active node

list. For each active child node, we first upsample its far-field contribution from the previous

set of directions to the current set. The upsampling operation is performed on Ax, Ay, Az,

Fx, Fy, and Fz arrays independently. For each array, we need to upsample in both θ and ϕ

dimensions. We use Fast Fourier Transform (FFT) to perform interpolation and upsampling

[Sar03]. Specifically, for each of the field arrays, we first perform a forward FFT on the ϕ

dimension, zero-padding the transformed array, and then perform an inverse FFT. Then, we

repeat the same process for the θ dimension. For upsampling each child’s scattering contri-

bution, we need in total 12 forward FFT operations and 12 inverse FFT operations. After

we upsampling the fields for the new set of directions, we translate the contribution from

the child’s grid center to the current grid center by multiplying the precomputed translation

kernel. This is followed by adding the child’s contribution to the current grid. We loop

through the nodes and children nodes on the CPU and perform upsampling and summing

on the GPU. We perform the same set of operations as we ascend the tree until we reach

the top level. At the top level, we translate and accumulate the contribution to the origin

to obtain the desired total scattering fields.
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surface point
grid center

(a) Leaf node computation.

grid center
child grid center

(b) Aggregating the far-field contribution to the top
level as we go up through the tree.

Figure 4: Traverse the tree and compute far-field scattering.

After we obtain Efar
s (r̂) and Hfar

s (r̂), which define the scattered fields Es and Hs via (8),

we can use them to compute scattered intensity. In electromagnetics, the time-averaged

Poynting vector [Jac21]

⟨S⟩ = 1
2
Re(E×H∗) (9)

plays a role analogous to vector irradiance in radiometry: given a differential area dA at

location r with a unit normal vector n̂, then the net radiant flux through dA is ⟨S(r)⟩ · n̂ dA.

To compute the far-field intensity, consider irradiance on the inside of a sphere of radius R

where kR ≫ 1. Since waves propagate radially [Jac21] in the far field, ⟨S⟩ and n̂ are both

parallel to r̂ and the scattered intensity Is(r̂) can be computed from Efar
s (r̂) and Hfar

s (r̂) as:

Is(r̂) = (⟨S(r)⟩ · n̂)R2 = |⟨S(r)⟩|R2

=

∣∣∣∣12Re(Efar
s (r̂)×Hfar

s (r̂)∗)

∣∣∣∣
=

1

2

√
ϵ0
µ0

∣∣∣Efar
s (r̂)

∣∣∣2 .
(10)

1.3 Simulation validation

In Figure 5, we compare our simulator with Mie scattering on spheres of radii 1, 2, 5, 10, 20

and 50µm. The incident plane wave travels in +x direction, and we report the normalized

scattered intensity in the x−y plane, for Transverse Magnetic (TM) and Transverse Electric

(TE) polarizations, as well as unpolarized results. For TM (TE) polarization, the incident

electric (magnetic) field aligns with the z−axis. We observe that as the size of the sphere
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increases, PO becomes more accurate. This is because the local tangent plane becomes a

better approximation as the curvature decreases. Human hair fibers usually have diameters

of 50-100 µm, where PO serves as a very good approximation.
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Figure 5: We compare our physical optics based simulator with Mie scattering on varying-
sized spheres. For TM and TE polarized, as well as unpolarized results, we observed that PO
provides very good accuracy for spheres whose radius is large compared to the wavelength
(400 nm).
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2 Noise-based representation

In this section, we provide additional results that validate our noise-based representation.

In Figure 6, we demonstrate that we can modulate the frequency bands and generate noise

patterns that have the desired Gaussian autocorrelation functions (ACFs). Specifically, we

first generate a series of Gaussian ACFs with varying standard deviation σ. In our test,

we vary σx and always set σy = 0.5σx. We define a square patch with length L = 10, a

resolution N = 200 in both dimensions, and we generate 100 noise patterns on the surface

patch for each of the four frequency bands. Next, we compute the ACF for each frequency

band and evaluate the target Gaussian ACF. We form a non-negative least square problem

to solve for non-negative weights of the ACF of the bands so that their weighted sum equals

the target Gaussian ACF. We compare the weighted ACFs of the noise, as well as the ACF

of the weighted sum of the noise, to the target Gaussian ACF and show good accuracy in the

fitting. The fact that the weighted ACFs of the noise bands and the ACF of the weighted

sum of the noise agree well with each other validates Lemma 5.1 in the main paper.

In Figures 7, 8, 9, and 10, we compare our synthesized scattering patterns with the

simulated ones for two different wavelengths, 400 nm and 688 nm, and six different incident

directions (θi = 0◦, 30◦, and 60◦; ϕi = 0◦and 90◦). The synthesized patterns were generated

by multiplying the noise patterns with the corresponding averaged components. The average

components used here for the synthesized results are the ensemble averages of the simulation

results for each fiber distribution, incident direction, and wavelength equal to 400 nm. We

demonstrate that the synthesized results capture the speckle size and shape very well. In

Figures 11, 12, 12, and 14, we convert the spectral results into RGB and demonstrate that

our synthesized results have similar hues to those in the simulated results. In these tests,

we observe structured patterns in the simulation results, which cannot be treated as fully

developed speckles. Therefore, our synthesized noise cannot capture them very well. We

also observe that fitting is more accurate for small incident theta angles.
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Figure 6: We demonstrate that we can modulate frequency bands and achieve the desired
Gaussian autocorrelation functions (ACFs) with varying widths. We compare the weighted
sum of the ACFs and the ACF of the weighted noise to the target ACFs. In practice, the
weighted sum of the ACFs from individual bands and the ACF of the weighted noise agree
with each other quite well, and our fitting achieves high accuracy.
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Figure 7: The rough fiber segment we used was generated by displacing a circular cylinder
segment with a radius of 40µm and a length of 50µm. We wrapped a rough surface patch
with dimensions corresponding to the circumference of the circular cross-section and the
length of the cylinder, respectively. The surface roughness is 0.1 and the refractive index
is 1.55. We compare the synthesized noise patterns to the simulation results for different
incident directions and wavelengths. The synthesized results are computed by taking the
product of the averaged simulation results of 50 fiber instances and the fitted wavelet noise
pattern. This also applies to the other cases on the following pages. The synthesized results
produce similar granular patterns as the simulated results.
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Figure 8: The rough fiber segment we used was generated by displacing an elliptical cylinder
segment with major and minor radii 40µm and 35µm. The length of the segment is 400µm.
We wrapped a rough surface patch with dimensions corresponding to the circumference of
the elliptical cross-section and the length of the cylinder, respectively. The surface roughness
is 0.02 and the refractive index is 1.55. The synthesized result captures the anisotropic shape
of the speckles well.
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Figure 9: This rough fiber segment was generated by displacing an elliptical cylinder segment
with major and minor radii 40µm and 35µm. The length of the segment is 400µm. In addition
to wrapping a rough surface patch around the cylinder, we simulate the cuticle scales by
introducing a 1D Gaussian random structure that describes the irregular edge of the cuticle.
The surface roughness is 0.02 and the 1D Gaussian random structure has a roughness 0.5.
The cuticle angle is -3 degrees and the refractive index is 1.55. There are some structural
mismatches around the forward scattering highlight. Our synthesized patterns in general are
similar to the simulation results.
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Figure 10: This rough fiber segment has the same surface roughness parameters as the one
in Figure 9, except that it has a larger gap between cuticle layers.
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Figure 11: We compare the simulated and synthesized patterns for the first type of rough
fibers, whose single wavelength results are shown in Figure 7. We compute the spectral
scattering patterns and convert them to RGB.
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Figure 12: We compare the simulated and synthesized patterns for the second type of rough
fibers, whose single wavelength results are shown in Figure 8. We compute the spectral
scattering patterns and convert them to RGB.
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Figure 13: We compare the simulated and synthesized patterns for the third type of rough
fibers, whose single wavelength results are shown in Figure 9. We compute the spectral
scattering patterns and convert them to RGB.
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Figure 14: We compare the simulated and synthesized patterns for the last type of rough
fibers, whose single wavelength results are shown in Figure 10. We compute the spectral
scattering patterns and convert them to RGB.
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